A135010 Triangle read by rows in which row n lists A000041(n-1) 1's followed by the list of juxtaposed lexicographically ordered partitions of n that do not contain 1 as a part.
1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 5, 3, 4, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4, 2, 3, 3, 2, 6, 3, 5, 4, 4, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle begins: [1]; [1],[2]; [1],[1],[3]; [1],[1],[1],[2,2],[4]; [1],[1],[1],[1],[1],[2,3],[5]; [1],[1],[1],[1],[1],[1],[1],[2,2,2],[2,4],[3,3],[6]; ... From _Omar E. Pol_, Sep 03 2013: (Start) Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6 in three ways. Note that before the dissection, the set of partitions was in the ordering mentioned in A026791. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6. --------------------------------------------------------- n j Diagram Parts Parts --------------------------------------------------------- . _ 1 1 |_| 1; 1; . _ 2 1 | |_ 1, 1, 2 2 |_ _| 2; 2; . _ 3 1 | | 1, 1, 3 2 | |_ _ 1, 1, 3 3 |_ _ _| 3; 3; . _ 4 1 | | 1, 1, 4 2 | | 1, 1, 4 3 | |_ _ _ 1, 1, 4 4 | |_ _| 2,2, 2,2, 4 5 |_ _ _ _| 4; 4; . _ 5 1 | | 1, 1, 5 2 | | 1, 1, 5 3 | | 1, 1, 5 4 | | 1, 1, 5 5 | |_ _ _ _ 1, 1, 5 6 | |_ _ _| 2,3, 2,3, 5 7 |_ _ _ _ _| 5; 5; . _ 6 1 | | 1, 1, 6 2 | | 1, 1, 6 3 | | 1, 1, 6 4 | | 1, 1, 6 5 | | 1, 1, 6 6 | | 1, 1, 6 7 | |_ _ _ _ _ 1, 1, 6 8 | | |_ _| 2,2,2, 2,2,2, 6 9 | |_ _ _ _| 2,4, 2,4, 6 10 | |_ _ _| 3,3, 3,3, 6 11 |_ _ _ _ _ _| 6; 6; ... (End)
Links
- Alois P. Heinz, Rows n = 1..23, flattened
- Omar E. Pol, Illustration of the section model of partitions
- Omar E. Pol, Illustration of the section model of partitions (2D view)
- Omar E. Pol, Illustration of the section model of partitions (3D view)
- Robert Price, Mathematica program to generate "Illustration of the section model of partitions"
- Robert Price, Mathematica program to generate "Illustration of the section model of partitions (2D view)"
Crossrefs
Programs
-
Maple
with(combinat): T:= proc(m) local b, ll; b:= proc(n, i, l) if n=0 then ll:=ll, l[] else seq(b(n-j, j, [l[], j]), j=i..n) fi end; ll:= NULL; b(m, 2, []); [1$numbpart(m-1)][], ll end: seq(T(n), n=1..10); # Alois P. Heinz, Feb 19 2012
-
Mathematica
less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[ Array[1 &, {PartitionsP[n - 1]}], Sort[ Reverse /@ Select[ IntegerPartitions[n], FreeQ[#, 1] &], less] ] // Flatten; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 14 2013 *) Table[Reverse@ConstantArray[{1}, PartitionsP[n - 1]]~Join~ DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x] != 1]], x_ /; x == 0, 2], {n, 1, 9}] // Flatten (* Robert Price, May 12 2020 *)
Comments