cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135037 Sums of the products of n consecutive triples of numbers.

Original entry on oeis.org

0, 60, 396, 1386, 3570, 7650, 14490, 25116, 40716, 62640, 92400, 131670, 182286, 246246, 325710, 423000, 540600, 681156, 847476, 1042530, 1269450, 1531530, 1832226, 2175156, 2564100, 3003000, 3495960, 4047246, 4661286, 5342670
Offset: 1

Views

Author

Cino Hilliard, Feb 10 2008

Keywords

Examples

			For n = 3, the sum of the first 3 triples is 0*1*2+3*4*5+6*7*8 =396, the 3rd entry in the sequence.
		

Programs

  • Magma
    [(27*n^4-18*n^3-15*n^2+6*n)/4: n in [1..40]]; // Vincenzo Librandi, Sep 18 2016
  • Mathematica
    Table[(27 n^4 - 18 n^3 - 15 n^2 + 6 n)/4, {n, 1, 50}] (* or *) LinearRecurrence[{5,-10,10,-5,1}, {0, 60, 396, 1386, 3570}, 25] (* G. C. Greubel, Sep 17 2016 *)
  • PARI
    sumprod3(n) = { local(x,s=0); forstep(x=0,n,3, s+=x*(x+1)*(x+2); print1(s",") ) }
    

Formula

a(1) = 0*1*2, a(2) = 0*1*2 + 3*4*5, ..., a(n) = 0*1*2 + 3*4*5 + 6*7*8 + ... + (2n-1)*(2n)*(2n+1).
a(n) = (27*n^4 - 18*n^3 - 15*n^2 + 6*n)/4.
From R. J. Mathar, Feb 14 2008: (Start)
O.g.f.: 6*x^2*(10+16*x+x^2)/(1-x)^5.
a(n) = 6*A024391(n-1). (End)
E.g.f.: (3/4)*x^2*(40 + 48*x + 9*x^2)*exp(x). - G. C. Greubel, Sep 17 2016