A135037 Sums of the products of n consecutive triples of numbers.
0, 60, 396, 1386, 3570, 7650, 14490, 25116, 40716, 62640, 92400, 131670, 182286, 246246, 325710, 423000, 540600, 681156, 847476, 1042530, 1269450, 1531530, 1832226, 2175156, 2564100, 3003000, 3495960, 4047246, 4661286, 5342670
Offset: 1
Examples
For n = 3, the sum of the first 3 triples is 0*1*2+3*4*5+6*7*8 =396, the 3rd entry in the sequence.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(27*n^4-18*n^3-15*n^2+6*n)/4: n in [1..40]]; // Vincenzo Librandi, Sep 18 2016
-
Mathematica
Table[(27 n^4 - 18 n^3 - 15 n^2 + 6 n)/4, {n, 1, 50}] (* or *) LinearRecurrence[{5,-10,10,-5,1}, {0, 60, 396, 1386, 3570}, 25] (* G. C. Greubel, Sep 17 2016 *)
-
PARI
sumprod3(n) = { local(x,s=0); forstep(x=0,n,3, s+=x*(x+1)*(x+2); print1(s",") ) }
Formula
a(1) = 0*1*2, a(2) = 0*1*2 + 3*4*5, ..., a(n) = 0*1*2 + 3*4*5 + 6*7*8 + ... + (2n-1)*(2n)*(2n+1).
a(n) = (27*n^4 - 18*n^3 - 15*n^2 + 6*n)/4.
From R. J. Mathar, Feb 14 2008: (Start)
O.g.f.: 6*x^2*(10+16*x+x^2)/(1-x)^5.
a(n) = 6*A024391(n-1). (End)
E.g.f.: (3/4)*x^2*(40 + 48*x + 9*x^2)*exp(x). - G. C. Greubel, Sep 17 2016