A135141 a(1)=1, a(p_n)=2*a(n), a(c_n)=2*a(n)+1, where p_n = n-th prime, c_n = n-th composite number.
1, 2, 4, 3, 8, 5, 6, 9, 7, 17, 16, 11, 10, 13, 19, 15, 12, 35, 18, 33, 23, 21, 14, 27, 39, 31, 25, 71, 34, 37, 32, 67, 47, 43, 29, 55, 22, 79, 63, 51, 20, 143, 26, 69, 75, 65, 38, 135, 95, 87, 59, 111, 30, 45, 159, 127, 103, 41, 24, 287, 70, 53, 139, 151, 131, 77, 36, 271, 191
Offset: 1
Examples
a(20) = 33 = 2*16 + 1 because 20 is 11th composite and a(11)=16. Or, a(20)=33=100001(bin). In other words it is a composite number, its index is a prime number, whose index is a prime....
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000
- Antti Karttunen, Entanglement Permutations, 2016-2017
- Index entries for sequences computed from indices in prime factorization
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Haskell
import Data.List (genericIndex) a135141 n = genericIndex a135141_list (n-1) a135141_list = 1 : map f [2..] where f x | iprime == 0 = 2 * (a135141 $ a066246 x) + 1 | otherwise = 2 * (a135141 iprime) where iprime = a049084 x -- Reinhard Zumkeller, Jan 29 2014
-
Mathematica
a[1] = 1; a[n_] := If[PrimeQ@n, 2*a[PrimePi[n]], 2*a[n - 1 - PrimePi@n] + 1]; Array[a, 69] (* Robert G. Wilson v, Feb 16 2008 *)
-
Maxima
/* Let pc = prime count (which prime it is), cc = composite count: */ pc[1]:0; cc[1]:0; pc[2]:1; cc[4]:1; pc[n]:=if primep(n) then 1+pc[prev_prime(n)] else 0; cc[n]:=if primep(n) then 0 else if primep(n-1) then 1+cc[n-2] else 1+cc[n-1]; a[1]:1; a[n]:=if primep(n) then 2*a[pc[n]] else 1+2*a[cc[n]];
-
PARI
A135141(n) = if(1==n, 1, if(isprime(n), 2*A135141(primepi(n)), 1+(2*A135141(n-primepi(n)-1)))); \\ Antti Karttunen, Dec 09 2019
-
Python
from sympy import isprime, primepi def a(n): return 1 if n==1 else 2*a(primepi(n)) if isprime(n) else 2*a(n - 1 - primepi(n)) + 1 # Indranil Ghosh, Jun 11 2017, after Mathematica code
Formula
a(n) = 2*A135141((A049084(n))*chip + A066246(n)*(1-chip)) + 1 - chip, where chip = A010051(n). - Reinhard Zumkeller, Jan 29 2014
From Antti Karttunen, Dec 09 2019: (Start)
Comments