A135203 For any integer n >= 1 the sequence gives the minimum power x for which n^x+(n-1)^x+(n-2)^x+...+1^x produces a perfect square.
1, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1
Examples
n=4 -> 4^3+3^3+2^3+1^3 = 64+27+8+1 = 100 n=5 -> 5^3+4^3+3^3+2^3+1^3 = 125+64+27+8+1 = 225 n=6 -> 6^3+5^3+4^3+3^3+2^3+1^3 = 216+125+64+27+8+1 = 441
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Cf. A001108.
Programs
-
Maple
P:=proc(n) local a,i,k,j,ok,x; for i from 1 by 1 to n do x:=1; ok:=1; while ok=1 do a:=0; k:=i; while k>0 do a:=a+k^x; k:=k-1; od; if (trunc(sqrt(a)))^2=a then print(x); ok:=0; else x:=x+1; fi; od; od; end: P(100);
-
PARI
A135203(n) = for(x=1,oo,if(issquare(sum(k=1,n,k^x)), return(x))); \\ Antti Karttunen, Sep 27 2018
Extensions
Offset and a typo in the definition corrected by Antti Karttunen, Sep 27 2018
Comments