cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A135204 Numbers n for which Sum_digits(n!) is a multiple of Sum_digits(n).

Original entry on oeis.org

1, 2, 3, 9, 10, 11, 12, 14, 16, 18, 20, 21, 22, 27, 28, 30, 33, 35, 36, 44, 45, 51, 54, 60, 61, 63, 72, 75, 81, 87, 90, 99, 100, 102, 105, 108, 111, 114, 117, 120, 126, 130, 135, 143, 144, 153, 158, 162, 165, 171, 180, 182, 185, 189, 190, 192, 200, 201, 202, 204, 206
Offset: 1

Views

Author

Keywords

Comments

I expect a(n) to be around kn log n for some constant k. - Charles R Greathouse IV, Apr 24 2013

Examples

			11 -> 11*10*9*8*7*6*5*4*3*2*1=39916800 -> (3+9+9+1+6+8+0+0)/(1+1)=18.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local i,k,w,x; for i from 1 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; x:=0; k:=i!; while k>0 do x:=x+k-(trunc(k/10)*10); k:=trunc(k/10); od; if trunc(x/w)=x/w then print(i); fi; od; end: P(1000);
  • Mathematica
    Select[Range[100], Divisible[Total[IntegerDigits[#!, 10]], Total[IntegerDigits[#, 10]]] &] (* G. C. Greubel, Sep 30 2016 *)
  • PARI
    is(n)=sumdigits(n!)%sumdigits(n)==0 \\ Charles R Greathouse IV, Apr 24 2013

A135205 Numbers m for which Sum_digits(m!!) is a multiple of Sum_digits(m).

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 10, 11, 12, 15, 18, 20, 21, 24, 25, 27, 30, 32, 33, 36, 42, 45, 46, 54, 55, 63, 72, 75, 81, 88, 90, 91, 93, 100, 101, 102, 105, 108, 111, 112, 117, 120, 121, 122, 123, 124, 126, 127, 135, 141, 144, 153, 154, 156, 162, 171, 176, 180, 182, 189, 198
Offset: 1

Views

Author

Paolo P. Lava, Nov 30 2007

Keywords

Examples

			11 -> 11*9*7*5*3*1=10395 -> (1+0+3+9+5)/(1+1) = 9.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local i,j,k,w,x; for i from 1 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; x:=i; j:=i-2; while j >0 do x:=x*j; j:=j-2; od: k:=x; x:=0; while k>0 do x:=x+k-(trunc(k/10)*10); k:=trunc(k/10); od; if trunc(x/w)=x/w then print(i); fi; od; end: P(1000);
  • Mathematica
    Select[Range[100], Divisible[Total[IntegerDigits[#!!, 10]], Total[IntegerDigits[#, 10]]] &] (* G. C. Greubel, Sep 30 2016 *)

Extensions

Offset 1 and b-file adapted by Paolo P. Lava, Jun 17 2024
Showing 1-2 of 2 results.