cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135210 Numbers n such that Sum_digits(n) + Sum_digits(n+1) = Sum_digits(2*n+1).

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24, 29, 30, 31, 32, 33, 34, 39, 40, 41, 42, 43, 44, 49, 99, 100, 101, 102, 103, 104, 109, 110, 111, 112, 113, 114, 119, 120, 121, 122, 123, 124, 129, 130, 131, 132, 133, 134, 139, 140, 141, 142, 143, 144, 149
Offset: 1

Views

Author

Keywords

Examples

			n=19 -> Sum_digits(19)=10; Sum_digits(20)=2 -> 10+2=12; Sum_digits(19+20)=12
		

Crossrefs

Cf. A127273.

Programs

  • Maple
    P:=proc(n) local a,b,i,k,w,y,x; for i from 0 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; x:=0; k:=i+1; while k>0 do x:=x+k-(trunc(k/10)*10); k:=trunc(k/10); od; y:=0; k:=2*i+1; while k>0 do y:=y+k-(trunc(k/10)*10); k:=trunc(k/10); od; if w+x=y then print(i); fi; od; end: P(1000);
  • Mathematica
    Select[Range[0,1000], Total[IntegerDigits[#]] + Total[IntegerDigits[# + 1]] == Total[IntegerDigits[ 2*# + 1]] &] (* G. C. Greubel, Oct 01 2016 *)
  • PARI
    is(n)=my(s=sumdigits,t); t=s(2*n+1)-s(n); t>0 && t==s(n+1) \\ Charles R Greathouse IV, Oct 01 2016