A135222 Triangle A049310 + A000012 - I, read by rows.
1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 4, 1, 1, 1, 4, 1, 5, 1, 1, 2, 1, 7, 1, 6, 1, 1, 1, 5, 1, 11, 1, 7, 1, 1, 2, 1, 11, 1, 16, 1, 8, 1, 1, 1, 6, 1, 21, 1, 22, 1, 9, 1, 1, 2, 1, 16, 1, 36, 1, 29, 1, 10, 1, 1, 1, 7, 1, 36, 1, 57, 1, 37, 1, 11, 1, 1, 2, 1, 22, 1, 71, 1, 85, 1, 46, 1, 12, 1, 1
Offset: 0
Examples
First few rows of the triangle: 1; 1, 1; 2, 1, 1; 1, 3, 1, 1; 2, 1, 4, 1, 1; 1, 4, 1, 5, 1, 1; 2, 1, 7, 1, 6, 1, 1; 1, 5, 1, 11, 1, 7, 1, 1; 2, 1, 11, 1, 16, 1, 8, 1, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Maple
T:= proc(n, k) option remember; if k=n then 1 else 1 + abs( ((1+(-1)^(n-k))/2)*binomial((n+k)/2, (n-k)/2)*cos((n-k)*Pi/2) ) fi; end: seq(seq(T(n, k), k=0..n), n=0..15); # G. C. Greubel, Nov 20 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==n, 1, 1 + Abs[Simplify[((1+(-1)^(n-k))/2)* Binomial[(n+k)/2, (n-k)/2]*Cos[(n-k)*Pi/2]]] ]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2019 *)
-
Sage
@CachedFunction def T(n, k): if (k==n): return 1 else: return 1 + abs( ((1+(-1)^(n-k))/2)*binomial((n+k)/2, (n-k)/2)*cos((n-k)*pi/2) ) [[T(n, k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Nov 20 2019
Formula
T(n,k) = 1 + abs( ((1+(-1)^(n-k))/2)*binomial((n+k)/2, (n-k)/2)*cos((n-k)*Pi/2) ), with T(n,n) = 1. - G. C. Greubel, Nov 20 2019
Extensions
More terms added and offset changed by G. C. Greubel, Nov 20 2019
Comments