cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A081659 a(n) = n + Fibonacci(n+1).

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 19, 28, 42, 64, 99, 155, 245, 390, 624, 1002, 1613, 2601, 4199, 6784, 10966, 17732, 28679, 46391, 75049, 121418, 196444, 317838, 514257, 832069, 1346299, 2178340, 3524610, 5702920, 9227499, 14930387, 24157853, 39088206
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Comments

Row sums of triangle A135222. - Gary W. Adamson, Nov 23 2007
a(n) is the F(n+1)-th highest positive integer not equal to any a(k), 1 <= k <= n-1, where F(n) = Fibonacci numbers = A000045(n). - Jaroslav Krizek, Oct 28 2009

Crossrefs

Cf. A000045, A001611 (first differences), A002062, A135222.

Programs

Formula

a(n) = (sqrt(5)*(1+sqrt(5))^(n+1) - sqrt(5)*(1-sqrt(5))^(n+1))/(10*2^n) + n.
G.f.: (1-x-x^3)/((1-x-x^2)*(1-x)^2).
From Jaroslav Krizek, Oct 28 2009: (Start)
a(0) = 1, a(n) = a(n-1) + A000045(n-1) + 1 for n >= 1.
a(0) = 1, a(n) = a(n-1) + A000045(n+1) - A000045(n) + 1 for n >= 1.
a(0) = 1, a(1) = 2, a(2) = 4, a(n) = a(n-1) + a(n-2) - (n-3) n >= 3. (End)
E.g.f.: (1/10)*exp(-2*x/(1+sqrt(5)))*(5 - sqrt(5) + (5 + sqrt(5))*exp(sqrt(5)*x) + 10*exp((1/2)*(1+sqrt(5))*x)*x). - Stefano Spezia, Nov 20 2019
Showing 1-1 of 1 results.