cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A132921 Triangle read by rows: T(n,k) = n + Fibonacci(k) - 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 4, 5, 6, 5, 5, 6, 7, 9, 6, 6, 7, 8, 10, 13, 7, 7, 8, 9, 11, 14, 19, 8, 8, 9, 10, 12, 15, 20, 28, 9, 9, 10, 11, 13, 16, 21, 29, 42, 10, 10, 11, 12, 14, 17, 22, 30, 43, 64, 11, 11, 12, 13, 15, 18, 23, 31, 44, 65, 99, 12, 12, 13, 14, 16, 19, 24, 32, 45, 66, 100, 155
Offset: 1

Views

Author

Gary W. Adamson, Sep 05 2007

Keywords

Comments

Right border = A081659, row sums = A132922: (1, 4, 10, 19, 32, ...).

Examples

			First few rows of the triangle are:
  1;
  2, 2;
  3, 3, 4;
  4, 4, 5, 6;
  5, 5, 6, 7, 9;
  ...
Column 3 = 4, 5, 6, 7, ...; since A081659(2) = 4.
		

Crossrefs

Row sums are A132922.

Programs

  • Mathematica
    T[n_,k_]:=n+Fibonacci[k]-1;Table[T[n,k],{n,12},{k,n}]//Flatten (* James C. McMahon, Mar 09 2025 *)
  • PARI
    T(n,k)=if(k<=n, n + fibonacci(k) - 1, 0) \\ Andrew Howroyd, Sep 01 2018

Formula

Equals (A127648 * A000012 + A000012 * A127647) - A000012 as infinite lower triangular matrices.

Extensions

Name clarified and terms a(56) and beyond from Andrew Howroyd, Sep 01 2018

A081660 n+A001045(n+1).

Original entry on oeis.org

1, 2, 5, 8, 15, 26, 49, 92, 179, 350, 693, 1376, 2743, 5474, 10937, 21860, 43707, 87398, 174781, 349544, 699071, 1398122, 2796225, 5592428, 11184835, 22369646, 44739269, 89478512, 178956999, 357913970, 715827913, 1431655796, 2863311563
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Crossrefs

Programs

  • Magma
    [2^(n+1)/3+n+(-1)^n/3: n in [0..40]]; // Vincenzo Librandi, Aug 10 2013
  • Mathematica
    Table[2^(n + 1)/3 + n + (-1)^n/3, {n, 0, 40}] (* Vincenzo Librandi, Aug 10 2013 *)
    LinearRecurrence[{3,-1,-3,2},{1,2,5,8},40] (* Harvey P. Dale, Feb 23 2025 *)

Formula

a(n) = 2^(n+1)/3+n+(-1)^n/3.
G.f.: (1-x-2*x^3)/((1+x)*(1-2*x)*(1-x)^2). [Bruno Berselli, Aug 11 2013]

A081662 Partial sums of n + Fibonacci(n+1).

Original entry on oeis.org

1, 3, 7, 13, 22, 35, 54, 82, 124, 188, 287, 442, 687, 1077, 1701, 2703, 4316, 6917, 11116, 17900, 28866, 46598, 75277, 121668, 196717, 318135, 514579, 832417, 1346674, 2178743, 3525042, 5703382, 9227992, 14930912, 24158411, 39088798
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[Total[{n,Fibonacci[n+1]}],{n,0,40}]] (* or *) LinearRecurrence[ {4,-5,1,2,-1},{1,3,7,13,22},41] (* Harvey P. Dale, Nov 19 2011 *)

Formula

a(n) = (1 - 2*sqrt(5)/5)*(sqrt(5)/2 - 1/2)^n*(-1)^n + (sqrt(5)/2 + 1/2)^n*(2*sqrt(5)/5 + 1) + (n^2 + n - 2)/2.
G.f.: (x^3 + x - 1)/((1-x)^3*(x^2 + x - 1)).
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5); a(0)=1, a(1)=3, a(2)=7, a(3)=13, a(4)=22. - Harvey P. Dale, Nov 19 2011
E.g.f.: exp(x)*(x^2 + 2*x - 2)/2 + 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 2*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Feb 13 2023

A081663 a(n) = Fibonacci(2n+1) + n*2^(n-1).

Original entry on oeis.org

1, 3, 9, 25, 66, 169, 425, 1058, 2621, 6485, 16066, 39921, 99601, 249666, 628917, 1592029, 4048866, 10341577, 26517113, 68226722, 176065901, 455514533, 1181040514, 3067684065, 7980068641, 20784441474, 54188706405, 141395801773
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Comments

Binomial transform of n + Fibonacci(n+1), A081659.

Crossrefs

Programs

  • Mathematica
    Table[Fibonacci[2n+1]+n 2^(n-1),{n,0,30}] (* or *) LinearRecurrence[{7,-17,16,-4},{1,3,9,25},30] (* Harvey P. Dale, Sep 17 2020 *)

Formula

a(n) = A001519(n)+A001787(n).
a(n) = 7*a(n-1)-17*a(n-2)+16*a(n-3)-4*a(n-4). G.f.: -(3*x^3-5*x^2+4*x-1) / ((2*x-1)^2*(x^2-3*x+1)). - Colin Barker, Jun 04 2013

Extensions

Definition corrected by Matt Lehman, May 21 2010

A132919 Triangle read by rows: T(n,k) = Fibonacci(n) + k - 1.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 34, 35, 36, 37, 38, 39, 40, 41, 42, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 1

Views

Author

Gary W. Adamson, Sep 05 2007

Keywords

Comments

Left border = Fibonacci numbers, right border = A081659.
Infinite lower triangular matrix by rows: n-th row = n terms of: F(n) followed by (F(n) + 1), (F(n) + 2), (F(n) + 3), ...

Examples

			First few rows of the triangle:
  1;
  1,  2;
  2,  3,  4;
  3,  4,  5,  6;
  5,  6,  7,  8,  9;
  8,  9, 10, 11, 12, 13;
  ...
		

Crossrefs

Row sums are A132920.

Programs

  • Mathematica
    T[n_,k_]:=Fibonacci[n]+k-1;Table[T[n,k],{n,11},{k,n}]//Flatten (* James C. McMahon, Mar 09 2025 *)
  • PARI
    T(n,k) = if(k<=n, fibonacci(n) + k - 1, 0); \\ Andrew Howroyd, Aug 10 2018

Extensions

Name changed and terms a(56) and beyond from Andrew Howroyd, Aug 10 2018

A135222 Triangle A049310 + A000012 - I, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 4, 1, 1, 1, 4, 1, 5, 1, 1, 2, 1, 7, 1, 6, 1, 1, 1, 5, 1, 11, 1, 7, 1, 1, 2, 1, 11, 1, 16, 1, 8, 1, 1, 1, 6, 1, 21, 1, 22, 1, 9, 1, 1, 2, 1, 16, 1, 36, 1, 29, 1, 10, 1, 1, 1, 7, 1, 36, 1, 57, 1, 37, 1, 11, 1, 1, 2, 1, 22, 1, 71, 1, 85, 1, 46, 1, 12, 1, 1
Offset: 0

Views

Author

Gary W. Adamson, Nov 23 2007

Keywords

Comments

Row sums = A081659: (1, 2 4, 6, 9, 13, 19, 28, ...).

Examples

			First few rows of the triangle:
  1;
  1, 1;
  2, 1,  1;
  1, 3,  1,  1;
  2, 1,  4,  1,  1;
  1, 4,  1,  5,  1, 1;
  2, 1,  7,  1,  6, 1, 1;
  1, 5,  1, 11,  1, 7, 1, 1;
  2, 1, 11,  1, 16, 1, 8, 1, 1;
...
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=n then 1
        else 1 + abs( ((1+(-1)^(n-k))/2)*binomial((n+k)/2, (n-k)/2)*cos((n-k)*Pi/2) )
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..15); # G. C. Greubel, Nov 20 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==n, 1, 1 + Abs[Simplify[((1+(-1)^(n-k))/2)* Binomial[(n+k)/2, (n-k)/2]*Cos[(n-k)*Pi/2]]] ]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==n): return 1
        else: return 1 + abs( ((1+(-1)^(n-k))/2)*binomial((n+k)/2, (n-k)/2)*cos((n-k)*pi/2) )
    [[T(n, k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Nov 20 2019

Formula

T(n,k) = A049310(n,k) + A000012(n,k) - Identity matrix, as infinite lower triangular matrices.
T(n,k) = 1 + abs( ((1+(-1)^(n-k))/2)*binomial((n+k)/2, (n-k)/2)*cos((n-k)*Pi/2) ), with T(n,n) = 1. - G. C. Greubel, Nov 20 2019

Extensions

More terms added and offset changed by G. C. Greubel, Nov 20 2019

A210677 a(n) = a(n-1) + a(n-2) + n + 1, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 5, 10, 20, 36, 63, 107, 179, 296, 486, 794, 1293, 2101, 3409, 5526, 8952, 14496, 23467, 37983, 61471, 99476, 160970, 260470, 421465, 681961, 1103453, 1785442, 2888924, 4674396, 7563351, 12237779, 19801163, 32038976, 51840174, 83879186, 135719397, 219598621, 355318057
Offset: 0

Views

Author

Alex Ratushnyak, May 09 2012

Keywords

Crossrefs

Cf. A081659: a(n)=a(n-1)+a(n-2)+n-5, a(0)=a(1)=1 (except first 2 terms and sign).
Cf. A001924: a(n)=a(n-1)+a(n-2)+n-4, a(0)=a(1)=1 (except first 4 terms).
Cf. A000126: a(n)=a(n-1)+a(n-2)+n-2, a(0)=a(1)=1 (except first term).
Cf. A066982: a(n)=a(n-1)+a(n-2)+n-1, a(0)=a(1)=1.
Cf. A030119: a(n)=a(n-1)+a(n-2)+n, a(0)=a(1)=1.
Cf. A210678: a(n)=a(n-1)+a(n-2)+n+2, a(0)=a(1)=1.

Programs

Formula

From Colin Barker, Jun 30 2012: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: (1 - 2*x + 4*x^2 - 2*x^3)/((1 - x)^2*(1 - x - x^2)). (End)
E.g.f.: exp(x/2)*(25*cosh(sqrt(5)*x/2) + 7*sqrt(5)*sinh(sqrt(5)*x/2))/5 - exp(x)*(4 + x). - Stefano Spezia, Feb 24 2023

A210678 a(n) = a(n-1)+a(n-2)+n+2, a(0)=a(1)=1.

Original entry on oeis.org

1, 1, 6, 12, 24, 43, 75, 127, 212, 350, 574, 937, 1525, 2477, 4018, 6512, 10548, 17079, 27647, 44747, 72416, 117186, 189626, 306837, 496489, 803353, 1299870, 2103252, 3403152, 5506435, 8909619, 14416087, 23325740, 37741862, 61067638, 98809537, 159877213, 258686789, 418564042
Offset: 0

Views

Author

Alex Ratushnyak, May 09 2012

Keywords

Crossrefs

Cf. A081659: a(n)=a(n-1)+a(n-2)+n-5, a(0)=a(1)=1 (except first 2 terms and sign).
Cf. A001924: a(n)=a(n-1)+a(n-2)+n-4, a(0)=a(1)=1 (except first 4 terms).
Cf. A000126: a(n)=a(n-1)+a(n-2)+n-2, a(0)=a(1)=1 (except first term).
Cf. A066982: a(n)=a(n-1)+a(n-2)+n-1, a(0)=a(1)=1.
Cf. A030119: a(n)=a(n-1)+a(n-2)+n, a(0)=a(1)=1.
Cf. A210677: a(n)=a(n-1)+a(n-2)+n+1, a(0)=a(1)=1.

Programs

  • Mathematica
    LinearRecurrence[{3,-2,-1,1},{1,1,6,12},40] (* Harvey P. Dale, Dec 10 2014 *)
    nxt[{n_,a_,b_}]:={n+1,b,a+b+n+3}; NestList[nxt,{1,1,1},40][[;;,2]] (* Harvey P. Dale, Mar 19 2023 *)

Formula

From Colin Barker, Jun 30 2012: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: (1 -2*x + 5*x^2 - 3*x^3)/((1 - x)^2*(1 - x - x^2)). (End)

A125100 Triangle read by rows: T(n,k) = Fibonacci(k+1)*binomial(n,k) + (k+1)*binomial(n,k+1) (0 <= k <= n).

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 4, 9, 9, 3, 5, 16, 24, 16, 5, 6, 25, 50, 50, 30, 8, 7, 36, 90, 120, 105, 54, 13, 8, 49, 147, 245, 280, 210, 98, 21, 9, 64, 224, 448, 630, 616, 420, 176, 34, 10, 81, 324, 756, 1260, 1512, 1344, 828, 315, 55, 11, 100, 450, 1200, 2310, 3276, 3570, 2880, 1620
Offset: 0

Views

Author

Gary W. Adamson, Nov 20 2006

Keywords

Comments

Binomial transform of the bidiagonal matrix with the Fibonacci numbers (1, 1, 2, 3, 5, 8, ...) in the main diagonal and (1, 2, 3, ...) in the subdiagonal.
Sum of terms in row n = n*2^(n-1) + Fibonacci(2n+1) (A081663).

Examples

			First few rows of the triangle:
  1;
  2,   1;
  3,   4,   2;
  4,   9,   9,   3;
  5,  16,  24,  16,   5;
  6,  25,  50,  50,  30,   8;
  7,  36,  90, 120, 105,  54,  13;
  8,  49, 147, 245, 280, 210,  98,  21;
  ...
		

Crossrefs

Programs

  • Maple
    with(combinat): T:=(n,k)->binomial(n,k)*fibonacci(k+1)+(k+1)*binomial(n,k+1): for n from 0 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form

Extensions

Edited by N. J. A. Sloane, Nov 29 2006
Showing 1-9 of 9 results.