A135223 Triangle A000012 * A127648 * A103451, read by rows.
1, 3, 2, 6, 2, 3, 10, 2, 3, 4, 15, 2, 3, 4, 5, 21, 2, 3, 4, 5, 6, 28, 2, 3, 4, 5, 6, 7, 36, 2, 3, 4, 5, 6, 7, 8, 45, 2, 3, 4, 5, 6, 7, 8, 9, 55, 2, 3, 4, 5, 6, 7, 8, 9, 10, 66, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 78, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 91, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Offset: 1
Examples
First few rows of the triangle are: 1; 3, 2; 6, 2, 3; 10, 2, 3, 4; 15, 2, 3, 4, 5; ...
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k) if k=1 then return Binomial(n+1,2); else return k; fi; end; Flat(List([1..15], n-> List([1..n], k-> T(n,k) ))); # G. C. Greubel, Nov 20 2019
-
Magma
[k eq 1 select Binomial(n+1,2) else k: k in [1..n], n in [1..15]]; // G. C. Greubel, Nov 20 2019
-
Maple
seq(seq( `if`(k=1, binomial(n+1,2), k), k=1..n), n=1..15); # G. C. Greubel, Nov 20 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==1, Binomial[n+1, 2], k]; Table[T[n, k], {n, 15}, {k,n}]//Flatten (* G. C. Greubel, Nov 20 2019 *)
-
PARI
T(n,k) = if(k==1, binomial(n+1,2), k); \\ G. C. Greubel, Nov 20 2019
-
Sage
@CachedFunction def T(n,k): if (k==1): return binomial(n+1, 2) else: return k [[T(n,k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Nov 20 2019
Formula
T(n,k) = A000012(n,k) * A127648(n,k) * A103451(n,k) as infinite lower triangular matrices. Replace left border of 1's in A002260 with (1, 3, 6, 10, 15, ...).
T(n, k) = k with T(n,1) = binomial(n+1, 2). - G. C. Greubel, Nov 20 2019
Extensions
More terms added by G. C. Greubel, Nov 20 2019
Comments