cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135223 Triangle A000012 * A127648 * A103451, read by rows.

Original entry on oeis.org

1, 3, 2, 6, 2, 3, 10, 2, 3, 4, 15, 2, 3, 4, 5, 21, 2, 3, 4, 5, 6, 28, 2, 3, 4, 5, 6, 7, 36, 2, 3, 4, 5, 6, 7, 8, 45, 2, 3, 4, 5, 6, 7, 8, 9, 55, 2, 3, 4, 5, 6, 7, 8, 9, 10, 66, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 78, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 91, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Offset: 1

Views

Author

Gary W. Adamson, Nov 23 2007

Keywords

Comments

Row sums = A028387.

Examples

			First few rows of the triangle are:
   1;
   3, 2;
   6, 2, 3;
  10, 2, 3, 4;
  15, 2, 3, 4, 5;
...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=1 then return Binomial(n+1,2);
        else return k;
        fi; end;
    Flat(List([1..15], n-> List([1..n], k-> T(n,k) ))); # G. C. Greubel, Nov 20 2019
  • Magma
    [k eq 1 select Binomial(n+1,2) else k: k in [1..n], n in [1..15]]; // G. C. Greubel, Nov 20 2019
    
  • Maple
    seq(seq( `if`(k=1, binomial(n+1,2), k), k=1..n), n=1..15); # G. C. Greubel, Nov 20 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==1, Binomial[n+1, 2], k]; Table[T[n, k], {n, 15}, {k,n}]//Flatten (* G. C. Greubel, Nov 20 2019 *)
  • PARI
    T(n,k) = if(k==1, binomial(n+1,2), k); \\ G. C. Greubel, Nov 20 2019
    
  • Sage
    @CachedFunction
    def T(n,k):
        if (k==1): return binomial(n+1, 2)
        else: return k
    [[T(n,k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Nov 20 2019
    

Formula

T(n,k) = A000012(n,k) * A127648(n,k) * A103451(n,k) as infinite lower triangular matrices. Replace left border of 1's in A002260 with (1, 3, 6, 10, 15, ...).
T(n, k) = k with T(n,1) = binomial(n+1, 2). - G. C. Greubel, Nov 20 2019

Extensions

More terms added by G. C. Greubel, Nov 20 2019