A135225 Pascal's triangle A007318 augmented with a leftmost border column of 1's.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 4, 1, 1, 1, 5, 10, 10, 5, 1, 1, 1, 6, 15, 20, 15, 6, 1, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1
Offset: 0
Examples
First few rows of the triangle: 1; 1, 1; 1, 1, 1; 1, 1, 2, 1; 1, 1, 3, 3, 1; 1, 1, 4, 6, 4, 1; ... The infinitesimal generator for P begins: /0 |0.......0 |1/2.....1...0 |1/6.....0...2....0 |0.......0...0....3....0 |-1/30...0...0....0....4....0 |0.......0...0....0....0....5....0 |1/42....0...0....0....0....0....6....0 |... \ The array P^n begins: /1 |1+1+...+1........1 |1+2+...+n........n.........1 |1+2^2+...+n^2....n^2.....2*n........1 |1+2^3+...+n^3....n^3.....3*n^2....3*n.......1 |... \ More generally, the array P^t, defined as exp(t*S) for complex t, begins: /1 |B(1,1+t)-B(1,1)..........1 |1/2*(B(2,1+t)-B(2,1))....t.........1 |1/3*(B(3,1+t)-B(3,1))....t^2.....2*t........1 |1/4*(B(4,1+t)-B(4,1))....t^3.....3*t^2....3*t.......1 |... \
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k) if k=0 then return 1; else return Binomial(n-1,k-1); fi; end; Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 19 2019
-
Magma
T:= func< n, k | k eq 0 select 1 else Binomial(n-1, k-1) >; [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 19 2019
-
Maple
T:= proc(n, k) option remember; if k=0 then 1 else binomial(n-1, k-1) fi; end: seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 19 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0, 1, Binomial[n-1, k-1]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 19 2019 *)
-
PARI
T(n,k) = if(k==0, 1, binomial(n-1, k-1)); \\ G. C. Greubel, Nov 19 2019
-
Sage
@CachedFunction def T(n,k): if (k==0): return 1 else: return binomial(n-1, k-1) [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 19 2019
Formula
Extensions
Corrected by R. J. Mathar, Apr 16 2013
Comments