A135226 Triangle A135225 + A007318 - A103451, read by rows.
1, 1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 5, 9, 7, 1, 1, 6, 14, 16, 9, 1, 1, 7, 20, 30, 25, 11, 1, 1, 8, 27, 50, 55, 36, 13, 1, 1, 9, 35, 77, 105, 91, 49, 15, 1, 1, 10, 44, 112, 182, 196, 140, 64, 17, 1, 1, 11, 54, 156, 294, 378, 336, 204, 81, 19, 1
Offset: 0
Examples
First few rows of the triangle: 1; 1, 1; 1, 3, 1; 1, 4, 5, 1; 1, 5, 9, 7, 1; 1, 6, 14, 16, 9, 1; 1, 7, 20, 30, 25, 11, 1; 1, 8, 27, 50, 55, 36, 13, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k) if k=0 or k=n then return 1; else return ((n+k)/n)*Binomial(n,k); fi; end; Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 20 2019
-
Magma
T:= func< n,k | k eq 0 or k eq n select 1 else ((n+k)/n)*Binomial(n,k) >; [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 20 2019
-
Maple
T:= proc(n, k) option remember; if k=0 or k=n then 1 else ((n+k)/n)*binomial(n,k) fi; end: seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 20 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, ((n+k)/n) Binomial[n, k]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2019 *)
-
PARI
T(n,k) = if(k==0 || k==n, 1, ((n+k)/n)*binomial(n,k)); \\ G. C. Greubel, Nov 20 2019
-
Sage
@CachedFunction def T(n,k): if (k==0 or k==n): return 1 else: return ((n+k)/n)*binomial(n, k) [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 20 2019
Formula
T(n,k) = ((n+k)/n)*binomial(n,k) with T(n,0) = T(n,n) = 1. - G. C. Greubel, Nov 20 2019
Extensions
Corrected and extended by Philippe Deléham, Nov 14 2011
Comments