cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135248 a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-4), with a(0)=a(1)=a(2)=0, and a(3)=1.

Original entry on oeis.org

0, 0, 0, 1, 4, 12, 32, 82, 208, 528, 1344, 3428, 8752, 22352, 57088, 145800, 372352, 950912, 2428416, 6201616, 15837504, 40445376, 103288320, 263775008, 673621760, 1720277760, 4393200640, 11219241536, 28651407104, 73169217792, 186857644032, 477192188032
Offset: 0

Views

Author

Paul Curtz, Feb 15 2008

Keywords

Comments

The inverse binomial transform is {0, 0, 0, 1, 0, 2, 0, 5, 0, 12, 0, 29, ...} (n>=0), an aerated variant of A000129. - R. J. Mathar, Jul 10 2019

Crossrefs

Cf. A101893 (first differences).

Programs

  • GAP
    a:=[0,0,0,1];; for n in [5..35] do a[n]:=4*a[n-1]-4*a[n-2]+ 2*a[n-4]; od; a; # G. C. Greubel, Nov 21 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x^3/(1-4*x+4*x^2-2*x^4) )); // G. C. Greubel, Nov 21 2019
    
  • Maple
    seq(coeff(series(x^3/(1-4*x+4*x^2-2*x^4), x, n+1), x, n), n = 0 ..35); # G. C. Greubel, Nov 21 2019
  • Mathematica
    LinearRecurrence[{4,-4,0,2}, {0,0,0,1}, 35] (* G. C. Greubel, Oct 04 2016 *)
  • PARI
    concat(vector(3), Vec(x^3/(1-4*x+4*x^2-2*x^4) + O(x^35))) \\ Colin Barker, Apr 08 2016
    
  • Sage
    def A135248_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x^3/(1-4*x+4*x^2-2*x^4)).list()
    A135248_list(30) # G. C. Greubel, Nov 21 2019
    

Formula

G.f.: x^3 / (1-4*x+4*x^2-2*x^4). - Colin Barker, Apr 08 2016