A135307 Number of Dyck paths of semilength n that do not contain the string UDDU.
1, 1, 2, 4, 9, 23, 63, 178, 514, 1515, 4545, 13827, 42540, 132124, 413741, 1304891, 4141198, 13214815, 42375461, 136478383, 441285890, 1431925180, 4661485203, 15219836738, 49827678840, 163535624722, 537962562453, 1773437280323
Offset: 0
Examples
a(6) = 63 since the top row of M^5 = (17, 17, 13, 10, 5, 1), sum of terms = 63.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Eric S. Egge and Kailee Rubin, Snow Leopard Permutations and Their Even and Odd Threads, arXiv:1508.05310 [math.CO], 2015
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
Programs
-
Maple
A135306 := proc(n,k) if n =0 then 1 ; else add((-1)^(j-k)*binomial(n-k,j-k)*binomial(2*n-3*j,n-j+1),j=k..floor((n-1)/2)) ; %*binomial(n,k)/n ; fi ; end: A135307 := proc(n) A135306(n,0) ; end: for n from 0 to 30 do printf("%a, ",A135307(n)) ; od: # R. J. Mathar, Dec 08 2007 # second Maple program: a:= proc(n) option remember; `if`(n<4, [1$2, 2, 4][n+1], (2*n*(n-1)*(28*n^2-56*n-3)*a(n-1) +(140*n^4-630*n^3+1063*n^2-699*n+144)*a(n-2) -12*(n-3)*(14*n^3-42*n^2+16*n+21)*a(n-3) +23*(n-3)*(n-4)*(28*n^2-14*n-3)*a(n-4))/ (n*(n+1)*(28*n^2-70*n+39))) end: seq(a(n), n=0..30); # Alois P. Heinz, Sep 13 2014
-
Mathematica
a[n_] := Sum[(-1)^j*Binomial[n, j]*Binomial[2*n-3*j, n-j+1], {j, 0, (n-1)/2}]/n; a[0] = 1; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Nov 27 2014, after R. J. Mathar *)
Formula
G.f.: f(x) satisfies x*f(x)^3 - (x+1)*f(x)^2 + (2*x+1)*f(x) - x = 0 . - Eric Rowland, Mar 29 2013
The Sapounakis et al. reference gives an explicit formula.
From Gary W. Adamson, Jan 30 2012: (Start)
a(n) is the sum of top row terms in M^(n-1), where M = the following infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
0, 1, 1, 0, 0, 0, ...
1, 0, 1, 1, 0, 0, ...
1, 1, 0, 1, 1, 0, ...
1, 1, 1, 0, 1, 1, ... (End)
a(n) ~ sqrt(8 + 5*sqrt(2) + sqrt(2*(11 + 8*sqrt(2))/7))/4 * ((1 + sqrt(13 + 16*sqrt(2)))/2)^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 27 2015
Extensions
More terms from R. J. Mathar, Dec 08 2007
Comments