cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135307 Number of Dyck paths of semilength n that do not contain the string UDDU.

Original entry on oeis.org

1, 1, 2, 4, 9, 23, 63, 178, 514, 1515, 4545, 13827, 42540, 132124, 413741, 1304891, 4141198, 13214815, 42375461, 136478383, 441285890, 1431925180, 4661485203, 15219836738, 49827678840, 163535624722, 537962562453, 1773437280323
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2007

Keywords

Comments

Top left terms of powers of the production matrix M generates sequence A102403. - Gary W. Adamson, Jan 30 2012

Examples

			a(6) = 63 since the top row of M^5 = (17, 17, 13, 10, 5, 1), sum of terms = 63.
		

Crossrefs

Leading column of A135306.
Cf. A102403.
Column k=9 of A243753.

Programs

  • Maple
    A135306 := proc(n,k) if n =0 then 1 ; else add((-1)^(j-k)*binomial(n-k,j-k)*binomial(2*n-3*j,n-j+1),j=k..floor((n-1)/2)) ; %*binomial(n,k)/n ; fi ; end: A135307 := proc(n) A135306(n,0) ; end: for n from 0 to 30 do printf("%a, ",A135307(n)) ; od: # R. J. Mathar, Dec 08 2007
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, [1$2, 2, 4][n+1],
          (2*n*(n-1)*(28*n^2-56*n-3)*a(n-1)
           +(140*n^4-630*n^3+1063*n^2-699*n+144)*a(n-2)
           -12*(n-3)*(14*n^3-42*n^2+16*n+21)*a(n-3)
           +23*(n-3)*(n-4)*(28*n^2-14*n-3)*a(n-4))/
           (n*(n+1)*(28*n^2-70*n+39)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 13 2014
  • Mathematica
    a[n_] := Sum[(-1)^j*Binomial[n, j]*Binomial[2*n-3*j, n-j+1], {j, 0, (n-1)/2}]/n; a[0] = 1; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Nov 27 2014, after R. J. Mathar *)

Formula

G.f.: f(x) satisfies x*f(x)^3 - (x+1)*f(x)^2 + (2*x+1)*f(x) - x = 0 . - Eric Rowland, Mar 29 2013
The Sapounakis et al. reference gives an explicit formula.
From Gary W. Adamson, Jan 30 2012: (Start)
a(n) is the sum of top row terms in M^(n-1), where M = the following infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
0, 1, 1, 0, 0, 0, ...
1, 0, 1, 1, 0, 0, ...
1, 1, 0, 1, 1, 0, ...
1, 1, 1, 0, 1, 1, ... (End)
a(n) ~ sqrt(8 + 5*sqrt(2) + sqrt(2*(11 + 8*sqrt(2))/7))/4 * ((1 + sqrt(13 + 16*sqrt(2)))/2)^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 27 2015

Extensions

More terms from R. J. Mathar, Dec 08 2007