cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A243753 Number A(n,k) of Dyck paths of semilength n avoiding the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 2, 1, 4, 1, 1, 0, 0, 0, 1, 1, 2, 4, 1, 9, 1, 1, 0, 0, 0, 1, 1, 2, 4, 9, 1, 21, 1, 1, 0, 0, 0, 1, 1, 1, 4, 9, 21, 1, 51, 1, 1, 0, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 09 2014

Keywords

Examples

			Square array A(n,k) begins:
  1, 1, 1, 1, 1,   1, 1,   1,   1,    1, ...
  0, 0, 0, 1, 1,   1, 1,   1,   1,    1, ...
  0, 0, 0, 1, 1,   1, 1,   2,   2,    2, ...
  0, 0, 0, 1, 1,   2, 1,   4,   4,    4, ...
  0, 0, 0, 1, 1,   4, 1,   9,   9,    9, ...
  0, 0, 0, 1, 1,   9, 1,  21,  21,   23, ...
  0, 0, 0, 1, 1,  21, 1,  51,  51,   63, ...
  0, 0, 0, 1, 1,  51, 1, 127, 127,  178, ...
  0, 0, 0, 1, 1, 127, 1, 323, 323,  514, ...
  0, 0, 0, 1, 1, 323, 1, 835, 835, 1515, ...
		

Crossrefs

Columns give: 0, 1, 2: A000007, 3, 4, 6: A000012, 5: A001006(n-1) for n>0, 7, 8, 14: A001006, 9: A135307, 10: A078481 for n>0, 11, 13: A105633(n-1) for n>0, 12: A082582, 15, 16: A036765, 19, 27: A114465, 20, 24, 26: A157003, 21: A247333, 25: A187256(n-1) for n>0.
Main diagonal gives A243754 or column k=0 of A243752.

Programs

  • Maple
    A:= proc(n, k) option remember; local b, m, r, h;
          if k<2 then return `if`(n=0, 1, 0) fi;
          m:= iquo(k, 2, 'r'); h:= 2^ilog2(k); b:=
          proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
            `if`(t=m and r=1, 0, b(x-1, y+1, irem(2*t+1, h)))+
            `if`(t=m and r=0, 0, b(x-1, y-1, irem(2*t, h)))))
          end; forget(b);
          b(2*n, 0, 0)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := A[n, k] = Module[{b, m, r, h}, If[k<2, Return[If[n == 0, 1, 0]]]; {m, r} = QuotientRemainder[k, 2]; h = 2^Floor[Log[2, k]]; b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, If[t == m && r == 1, 0, b[x-1, y+1, Mod[2*t+1, h]]] + If[t == m && r == 0, 0, b[x-1, y-1, Mod[2*t, h]]]]]; b[2*n, 0, 0]]; Table[ Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *)

A135306 Triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with k UDDU's.

Original entry on oeis.org

1, 1, 2, 4, 1, 9, 5, 23, 17, 2, 63, 54, 15, 178, 177, 69, 5, 514, 594, 273, 49, 1515, 1997, 1056, 280, 14, 4545, 6698, 4077, 1308, 168, 13827, 22487, 15545, 5745, 1140, 42, 42540, 75701, 58377, 24695, 6105, 594, 132124, 255455, 216864, 103862, 29810
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2007

Keywords

Comments

From Emeric Deutsch, Dec 15 2007: (Start)
Row 0 has 1 term; row n (n >= 1) has ceiling(n/2) terms.
Row sums yield the Catalan numbers (A000108).
Column 0 yields A135307.
T(2n+1, n) = binomial(2n,n)/(n+1) (the Catalan numbers, A000108). (End)

Examples

			Triangle begins:
     1;
     1;
     2;
     4,    1;
     9,    5;
    23,   17,    2;
    63,   54,   15;
   178,  177,   69,    5;
   514,  594,  273,   49;
  1515, 1997, 1056,  280,   14;
  4545, 6698, 4077, 1308,  168;
  ...
T(4,1) = 5 because we have U(UDDU)DUD, U(UDDU)UDD, UU(UDDU)DD, UDU(UDDU)D and UUD(UDDU)D (the UDDU's are shown between parentheses).
		

Crossrefs

Programs

  • Maple
    A135306 := proc(n,k) if n =0 then 1 ; else add((-1)^(j-k)*binomial(n-k,j-k)*binomial(2*n-3*j,n-j+1),j=k..floor((n-1)/2)) ; %*binomial(n,k)/n ; fi ; end: for n from 0 to 20 do for k from 0 to max(0,(n-1)/2) do printf("%a, ",A135306(n,k)) ; od: od: # R. J. Mathar, Dec 08 2007
    T:=proc(n,k) options operator, arrow: binomial(n,k)*(sum((-1)^(j-k)*binomial(n-k,j-k)*binomial(2*n-3*j,n-j+1),j=k..floor((1/2)*n-1/2)))/n end proc: 1; for n to 13 do seq(T(n,k),k=0..ceil((n-2)*1/2)) end do; # yields sequence in triangular form; Emeric Deutsch, Dec 15 2007
  • Mathematica
    T[n_, k_] := Binomial[n, k]*Sum[(-1)^(j-k)*Binomial[n-k, j-k]*Binomial[2*n - 3*j, -j+n+1], {j, k, (n-1)/2}]/n; T[0, 0] = 1; Table[T[n, k], {n, 0, 13}, {k, 0, If[n == 0, 0, Quotient[n-1, 2]]}] // Flatten (* Jean-François Alcover, Nov 27 2014, after Emeric Deutsch *)

Formula

From Emeric Deutsch, Dec 15 2007: (Start)
T(n,k) = (1/n)*binomial(n,k)*Sum_{j=k..floor((n-1)/2)} (-1)^(j-k)*binomial(n-k, j-k)*binomial(2n-3j, n-j+1).
G.f.: G = G(t,z) satisfies z*G^3 - ((1-t)*z+1)*G^2 + (1+2*(1-t)*z)*G - (1-t)*z = 0. (End)

Extensions

More terms from R. J. Mathar and Emeric Deutsch, Dec 08 2007
Showing 1-2 of 2 results.