cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135337 Number of Dyck paths of semilength n with no DUUU's starting at level 1.

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 105, 320, 1011, 3289, 10957, 37216, 128435, 449142, 1588228, 5669505, 20403322, 73945553, 269647630, 988642372, 3642310793, 13476857235, 50059454347, 186598634398, 697777187275, 2616919372356, 9840647362248
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2007

Keywords

Comments

Column 0 of A135331. - Emeric Deutsch, Dec 14 2007

Examples

			a(4)=13 because among the 14 (=A000108(4)) Dyck paths of semilength 14 only UDUUUDDD does not qualify.
a(4) = 13 since the top row of M^3 = [4, 5, 3, 1, 0, 0, 0, ...] with 13 = (4 + 5 + 3 + 1).
		

Crossrefs

Programs

  • Maple
    a := -2*x+1-sqrt(1-4*x); b := 2*(sqrt(1-4*x)*x+x^2);
    series((2*a+b)/(a+b), x=0, 30): seq(coeff(%,x,n), n=0..26); # after V. Kotesovec, Peter Luschny, Mar 20 2014
  • Mathematica
    CoefficientList[Series[1+x*((1-Sqrt[1-4*x])/(2*x))^2/(1+x^3*((1-Sqrt[1-4*x])/(2*x))^4), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • Maxima
    a(n):=sum(sum(k*binomial(2*m-k+1,m-k+1)*binomial(n-m-1,n-m-k),k,0,n-m)/(m+1),m,0,n); /* Vladimir Kruchinin, Jan 16 2018 */
  • PARI
    x='x+O('x^25); Vec(1+x*((1-sqrt(1-4*x))/(2*x))^2/(1+x^3*((1-sqrt(1-4*x))/(2*x))^4)) \\ G. C. Greubel, Feb 11 2017
    

Formula

G.f.: 1+z*C^2/(1+z^3*C^4) = (1-z)*(2*C-1)/[(1-2*z)*C + z], where C = (1-sqrt(1-4*z))/(2*z) is the g.f. of the Catalan numbers (A000108). - Emeric Deutsch, Dec 14 2007
From Gary W. Adamson, Jul 26 2011: (Start)
a(n) = sum of top row terms of M^(n-1), M = an infinite square production matrix as follows, in which a column of [1,1,0,0,0,...] is prepended to an infinite lower triangular matrix of all 1's and the rest zeros:
1, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
0, 1, 1, 1, 0, 0, ...
0, 1, 1, 1, 1, 0, ...
0, 1, 1, 1, 1, 1, ...
... (End)
a(n) ~ 3*4^(n+1)/(25*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
a(n) = A059019(n+1) - A059019(n), n>0. - Philippe Deléham, Oct 02 2014
a(n) = Sum_{m=0..n} 1/(m+1)*Sum_{k=0..n-m} k*C(2*m-k+1,m-k+1)*C(n-m-1,n-m-k). - Vladimir Kruchinin, Jan 16 2018

Extensions

More terms from Emeric Deutsch, Dec 14 2007