cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135342 Number of distinct means of nonempty subsets of {1,...,n}.

Original entry on oeis.org

1, 3, 5, 9, 15, 25, 37, 55, 77, 105, 137, 179, 225, 283, 347, 419, 499, 595, 697, 817, 945, 1085, 1235, 1407, 1587, 1787, 1999, 2229, 2471, 2741, 3019, 3327, 3651, 3995, 4355, 4739, 5135, 5567, 6017, 6491, 6981, 7511, 8053, 8637, 9241, 9869, 10519, 11215, 11927, 12681
Offset: 1

Views

Author

Jacob A. Siehler, Feb 16 2008

Keywords

Examples

			a(4) = 9: the possible means for a set drawn from {1, 2, 3, 4} are {1, 3/2, 2, 7/3, 5/2, 8/3, 3, 7/2, 4}.
		

Crossrefs

First differences are A002088, second differences A000010.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [0, 1, 3, 5][n+1],
          2*a(n-1)-a(n-2)+numtheory[phi](n-1))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Sep 13 2019
  • Mathematica
    a[n_] := Sum[EulerPhi[k] (n - k), {k, 1, n - 1}] + Min[n, 2]
  • PARI
    M135342=List([1,3,5]);
    A135342(n)=while(n>#M135342, listput(M135342, [-1,2]*Col(M135342[-2..-1])+eulerphi(#M135342))); M135342[n];
    apply(A135342, [1..55]) \\ M. F. Hasler, Jan 24 2023
    
  • Python
    from sympy import totient
    def A135342(n, A=[1,3,5]):
        while n>len(A): A.append(2*A[-1]-A[-2]+totient(len(A)))
        return A[n-1] # M. F. Hasler, Jan 24 2023

Formula

a(n) = Sum_{k=1..n-1} [(n-k) * phi(k)] + min(n,2) = A103116(n-1)+ min(n,2); a(1)=1; a(2)=3; a(3)=5.
a(n) = 2*a(n-1) - a(n-2) + phi(n-1) for n>3.
a(n)-a(n-1) = A002088(n-1), n>=3. (Note the previous formula just says that the 2nd differences are A000010, and this is a trivial consequence.) - R. J. Mathar, Jan 27 2023