A000016 a(n) is the number of distinct (infinite) output sequences from binary n-stage shift register which feeds back the complement of the last stage.
1, 1, 1, 2, 2, 4, 6, 10, 16, 30, 52, 94, 172, 316, 586, 1096, 2048, 3856, 7286, 13798, 26216, 49940, 95326, 182362, 349536, 671092, 1290556, 2485534, 4793492, 9256396, 17895736, 34636834, 67108864, 130150588, 252645136, 490853416
Offset: 0
Examples
For n=3 the 2 output sequences are 000111000111... and 010101... For n=5 the 4 output sequences are those with periodic parts {0000011111, 0001011101, 0010011011, 01}. For n=6 there are 6 such sequences.
References
- B. D. Ginsburg, On a number theory function applicable in coding theory, Problemy Kibernetiki, No. 19 (1967), pp. 249-252.
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 172.
- J. Hedetniemi and K. R. Hutson, Equilibrium of shortest path load in ring network, Congressus Numerant., 203 (2010), 75-95. See p. 83.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. Stoffer, Delay equations with rapidly oscillating stable periodic solutions, J. Dyn. Diff. Eqs. 20 (1) (2008) 201, eq. (39)
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..3334 (first 201 terms from T. D. Noe)
- Nicolás Álvarez, Victória Becher, Martín Mereb, Ivo Pajor, and Carlos Miguel Soto, On extremal factors of de Bruijn-like graphs, Univ. Buenos Aires (Argentina 2023). See also arXiv:2308.16257 [math.CO], 2023. See references.
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 17.
- A. E. Brouwer, The Enumeration of Locally Transitive Tournaments, Math. Centr. Report ZW138, Amsterdam, 1980.
- S. Butenko, P. Pardalos, I. Sergienko, V. P. Shylo and P. Stetsyuk, Estimating the size of correcting codes using extremal graph problems, Optimization, 227-243, Springer Optim. Appl., 32, Springer, New York, 2009.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Sébastien Designolle, Tamás Vértesi, and Sebastian Pokutta, Symmetric multipartite Bell inequalities via Frank-Wolfe algorithms, arXiv:2310.20677 [quant-ph], 2023.
- T. M. A. Fink, Exact dynamics of the critical Kauffman model with connectivity one, arXiv:2302.05314 [cond-mat.stat-mech], 2023.
- R. W. Hall and P. Klingsberg, Asymmetric rhythms and tiling canons, Amer. Math. Monthly, 113 (2006), 887-896.
- A. A. Kulkarni, N. Kiyavash and R. Sreenivas, On the Varshamov-Tenengolts Construction on Binary Strings, 2013.
- E. M. Palmer and R. W. Robinson, Enumeration of self-dual configurations, Pacific J. Math., 110 (1984), 203-221.
- R. Pries and C. Weir, The Ekedahl-Oort type of Jacobians of Hermitian curves, arXiv preprint arXiv:1302.6261 [math.NT], 2013.
- N. J. A. Sloane, On single-deletion-correcting codes
- N. J. A. Sloane, Challenge Problems: Independent Sets in Graphs
- Yan Bo Ti, Gabriel Verret, and Lukas Zobernig, Abelian Varieties with p-rank Zero, arXiv:2203.08401 [math.NT], 2022.
- Antonio Vera López, Luis Martínez, Antonio Vera Pérez, Beatriz Vera Pérez, and Olga Basova, Combinatorics related to Higman's conjecture I: Parallelogramic digraphs and dispositions, Linear Algebra Appl. 530, 414-444 (2017).
- Index entries for sequences related to tournaments
- Index entries for sequences related to necklaces
- Index entries for sequences related to subset sums modulo m
Crossrefs
Programs
-
Haskell
a000016 0 = 1 a000016 n = (`div` (2 * n)) $ sum $ zipWith (*) (map a000010 oddDivs) (map ((2 ^) . (div n)) $ oddDivs) where oddDivs = a182469_row n -- Reinhard Zumkeller, May 01 2012
-
Maple
A000016 := proc(n) local d, t; if n = 0 then return 1 else t := 0; for d from 1 to n do if n mod d = 0 and d mod 2 = 1 then t := t + NumberTheory:-Totient(d)* 2^(n/d)/(2*n) fi od; return t fi end:
-
Mathematica
a[0] = 1; a[n_] := Sum[Mod[k, 2] EulerPhi[k]*2^(n/k)/(2*n), {k, Divisors[n]}]; Table[a[n], {n, 0, 35}](* Jean-François Alcover, Feb 17 2012, after Pari *)
-
PARI
a(n)=if(n<1,n >= 0,sumdiv(n,k,(k%2)*eulerphi(k)*2^(n/k))/(2*n));
-
Python
from sympy import totient, divisors def A000016(n): return sum(totient(d)<
>(~n&n-1).bit_length(),generator=True))//n if n else 1 # Chai Wah Wu, Feb 21 2023
Formula
a(n) = Sum_{odd d divides n} (phi(d)*2^(n/d))/(2*n), n>0.
a(n) = A063776(n)/2.
a(n) = 2^(n-1) - A327477(n). - Gus Wiseman, Sep 14 2019
Extensions
More terms from Michael Somos, Dec 11 1999
Comments