A135348 Total sum of squares of number of distinct parts in all partitions of n.
1, 2, 6, 11, 22, 37, 64, 101, 161, 243, 367, 535, 778, 1103, 1558, 2160, 2981, 4056, 5493, 7355, 9804, 12948, 17026, 22217, 28872, 37276, 47942, 61314, 78134, 99081, 125223, 157577, 197672, 247011, 307765, 382130, 473171, 584056, 719089, 882796
Offset: 1
Examples
a(5)=22: the partitions of 5 are 1+1+1+1+1 (1 distinct part), 1+1+1+2 (2 d.p.), 1+2+2 (2 d.p.), 1+1+3 (2 d.p.), 2+3 (2 d.p.), 1+4 (2 d.p.) and 5 (1. d.p.). The sum of the squares of the number of distinct parts is 1 +2^2 +2^2 +2^2 +2^2 +2^2 +1^2= 22. - _R. J. Mathar_, Mar 12 2023
Programs
-
Maple
A135348 := proc(n) local gf,m ; gf := x*(1+x^2)/(1-x)/(1-x^2) ; for m from 1 to n do gf := taylor(gf/(1-x^m),x=0,n+1) od: coeftayl(gf,x=0,n) ; end: seq(A135348(n),n=1..80) ; # R. J. Mathar, Feb 19 2008
-
Mathematica
nmax = 50; Rest[CoefficientList[Series[x*(1 + x^2)/((1 - x)*(1 - x^2)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 29 2018 *)
-
PARI
A135348(N,x='x)=Vec((1+x^2)/prod(m=1,N-1,1-x^m,(1-x+O(x^N))*(1-x^2))) \\ M. F. Hasler, May 13 2018
Formula
G.f.: x*(1+x^2)/((1-x)*(1-x^2)*Product_{m>0} (1-x^m)). Euler transform of 2,3,1,0,1,1,1,1,1,... .
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (2*Pi^2). - Vaclav Kotesovec, May 29 2018
Extensions
More terms from R. J. Mathar, Feb 19 2008