cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135348 Total sum of squares of number of distinct parts in all partitions of n.

Original entry on oeis.org

1, 2, 6, 11, 22, 37, 64, 101, 161, 243, 367, 535, 778, 1103, 1558, 2160, 2981, 4056, 5493, 7355, 9804, 12948, 17026, 22217, 28872, 37276, 47942, 61314, 78134, 99081, 125223, 157577, 197672, 247011, 307765, 382130, 473171, 584056, 719089, 882796
Offset: 1

Views

Author

Vladeta Jovovic, Feb 16 2008

Keywords

Examples

			a(5)=22: the partitions of 5 are 1+1+1+1+1 (1 distinct part), 1+1+1+2 (2 d.p.), 1+2+2 (2 d.p.), 1+1+3 (2 d.p.), 2+3 (2 d.p.), 1+4 (2 d.p.) and 5 (1. d.p.). The sum of the squares of the number of distinct parts is 1 +2^2 +2^2 +2^2 +2^2 +2^2 +1^2= 22. - _R. J. Mathar_, Mar 12 2023
		

Crossrefs

Programs

  • Maple
    A135348 := proc(n)
        local gf,m ;
        gf := x*(1+x^2)/(1-x)/(1-x^2) ;
        for m from 1 to n do
            gf := taylor(gf/(1-x^m),x=0,n+1)
        od:
        coeftayl(gf,x=0,n) ;
    end:
    seq(A135348(n),n=1..80) ; # R. J. Mathar, Feb 19 2008
  • Mathematica
    nmax = 50; Rest[CoefficientList[Series[x*(1 + x^2)/((1 - x)*(1 - x^2)) * Product[1/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 29 2018 *)
  • PARI
    A135348(N,x='x)=Vec((1+x^2)/prod(m=1,N-1,1-x^m,(1-x+O(x^N))*(1-x^2))) \\ M. F. Hasler, May 13 2018

Formula

G.f.: x*(1+x^2)/((1-x)*(1-x^2)*Product_{m>0} (1-x^m)). Euler transform of 2,3,1,0,1,1,1,1,1,... .
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (2*Pi^2). - Vaclav Kotesovec, May 29 2018
Convolution of 0, 1, 1, 3, 3, 5, 5, ... (A109613) by A000041. - R. J. Mathar, Mar 12 2023

Extensions

More terms from R. J. Mathar, Feb 19 2008