A135376 a(n) is the smallest prime that does not divide n(n+1)/2.
2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 5, 5, 2, 2, 7, 3, 2, 2, 3, 11, 2, 2, 5, 7, 2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 11, 5, 2, 2, 7, 3, 2, 2, 3, 7, 2, 2, 5, 5, 2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 7, 7, 2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 5, 5, 2, 2, 7, 3, 2, 2, 3, 7, 2, 2, 5, 11, 2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 7, 5, 2, 2, 7, 3, 2, 2, 3
Offset: 1
Keywords
Examples
The 11th triangular number is 66 = 2*3*11. 5 is the smallest prime that is coprime to 66, so a(11) = 5.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A135376 := proc(n) local T,p ; T := n*(n+1)/2 ; p := 2 ; while T mod p = 0 do p := nextprime(p) ; od: RETURN(p) ; end: seq(A135376(n),n=1..120) ; # R. J. Mathar, Dec 11 2007
-
Mathematica
a = {}; For[n = 1, n < 80, n++, j = 1; While[Mod[n*(n + 1)/2, Prime[j]] == 0, j++ ]; AppendTo[a, Prime[j]]]; a (* Stefan Steinerberger, Dec 10 2007 *) sp[n_]:=Module[{p=2},While[Mod[n,p]==0,p=NextPrime[p]];p]; sp[#]&/@ Accumulate[ Range[110]] (* Harvey P. Dale, Jul 26 2018 *)
Formula
a(4n+1) = a(4n+2) = 2 for all nonnegative integers n.
a(n) = A053670(n) for all n congruent to 0 or 3 (mod 4).
Extensions
More terms from Stefan Steinerberger and R. J. Mathar, Dec 10 2007
Comments