cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135376 a(n) is the smallest prime that does not divide n(n+1)/2.

Original entry on oeis.org

2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 5, 5, 2, 2, 7, 3, 2, 2, 3, 11, 2, 2, 5, 7, 2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 11, 5, 2, 2, 7, 3, 2, 2, 3, 7, 2, 2, 5, 5, 2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 7, 7, 2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 5, 5, 2, 2, 7, 3, 2, 2, 3, 7, 2, 2, 5, 11, 2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 7, 5, 2, 2, 7, 3, 2, 2, 3
Offset: 1

Views

Author

Leroy Quet, Dec 09 2007

Keywords

Comments

The sums of the first 10^k terms, for k = 1, 2, ..., are 28, 354, 3596, 36026, 360402, 3604134, 36041392, 360413970, 3604140072, 36041400856, ... . Apparently, the asymptotic mean of this sequence is limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3.604140... . - Amiram Eldar, Sep 10 2022

Examples

			The 11th triangular number is 66 = 2*3*11. 5 is the smallest prime that is coprime to 66, so a(11) = 5.
		

Crossrefs

Programs

  • Maple
    A135376 := proc(n) local T,p ; T := n*(n+1)/2 ; p := 2 ; while T mod p = 0 do p := nextprime(p) ; od: RETURN(p) ; end: seq(A135376(n),n=1..120) ; # R. J. Mathar, Dec 11 2007
  • Mathematica
    a = {}; For[n = 1, n < 80, n++, j = 1; While[Mod[n*(n + 1)/2, Prime[j]] == 0, j++ ]; AppendTo[a, Prime[j]]]; a (* Stefan Steinerberger, Dec 10 2007 *)
    sp[n_]:=Module[{p=2},While[Mod[n,p]==0,p=NextPrime[p]];p]; sp[#]&/@ Accumulate[ Range[110]] (* Harvey P. Dale, Jul 26 2018 *)

Formula

a(4n+1) = a(4n+2) = 2 for all nonnegative integers n.
a(n) = A053670(n) for all n congruent to 0 or 3 (mod 4).
a(n) = A053669(A000217(n)). - R. J. Mathar, Dec 11 2007

Extensions

More terms from Stefan Steinerberger and R. J. Mathar, Dec 10 2007