cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A135382 Records in A135381.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 32, 531441, 5832000, 30840979456, 102372436321763328, 5385144351531158470656, 95883934811108205920256, 8384433103482628092198912000, 271349238454240747975480442880000, 194420753673323618666864443392000000000, 2230117087799166503951875964107867690793619500826624, 1262524163403573488849931050070387361916429306607697920000000
Offset: 1

Views

Author

J. H. Conway and N. J. A. Sloane, Dec 10 2007

Keywords

Comments

For every term shown, the high point of the trajectory is the initial term.

Examples

			2230117087799166503951875964107867690793619500826624 = 2^94 * 3^43 * 7^3. The next term is 2^120 * 3^40 * 5^7.
		

Crossrefs

A135383 Where records occur in A135381.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 35, 37, 39, 99, 473, 547, 593, 668, 2499, 64748
Offset: 1

Views

Author

J. H. Conway and N. J. A. Sloane, Dec 10 2007

Keywords

Crossrefs

A133501 Number of steps for "powertrain" operation to converge when started at n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 5, 2, 3, 3, 1, 1, 1, 3, 2, 5, 5, 5, 4, 9, 1, 1, 2, 5, 3, 3, 4, 6, 3, 5, 1, 1, 3, 2, 3, 5, 3, 3, 2, 4, 1, 1, 6, 3, 4, 4, 3, 3, 8, 2, 1, 1, 6, 6, 2, 2, 3, 5, 3, 2, 1, 1, 5, 3, 4, 4, 5, 4, 3, 7, 1, 1, 2, 5, 4, 2, 3, 3, 2, 4, 1, 1, 1, 1, 1
Offset: 0

Views

Author

J. H. Conway and N. J. A. Sloane, Dec 03 2007

Keywords

Comments

See A133500 for definition.
It is conjectured that every number converges to a fixed-point.

Examples

			39 -> 19683 -> 1594323 -> 38443359375 -> 59440669655040 -> 0, so a(39) = 5.
		

Crossrefs

For the powertrain map itself, see A133500.
See A133508, A133503 for records. See A135381 for high-water marks.

Programs

  • Maple
    powertrain:=proc(n) local a,i,n1,n2,t1,t2; n1:=abs(n); n2:=sign(n); t1:=convert(n1, base, 10); t2:=nops(t1); a:=1; for i from 0 to floor(t2/2)-1 do a := a*t1[t2-2*i]^t1[t2-2*i-1]; od: if t2 mod 2 = 1 then a:=a*t1[1]; fi; RETURN(n2*a); end;
    # Compute trajectory of n under repeated application of the powertrain map of A133500. This will return -1 if the trajectory does not converge to a single number in 100 steps (so it could fail if the trajectory enters a nontrivial loop or takes longer than 100 steps to converge).
    PTtrajectory := proc(n) local p,M,t1,t2,i; M:=100; p:=[n]; t1:=n; for i from 1 to M do t2:=powertrain(t1); if t2 = t1 then RETURN(n,i-1,p); fi; t1:=t2; p:=[op(p),t2]; od; RETURN(n,-1,p); end;
Showing 1-3 of 3 results.