A135392 A triangular sequence from a general proportionality to modular function polynomial triangular function.
-1, -1, 1, 1, -1, 2, 3, 1, -1, 3, 6, 4, 1, -1, 4, 10, 10, 5, 1, -1, 5, 15, 20, 15, 6, 1, -1, 6, 21, 35, 35, 21, 7, 1, -1, 7, 28, 56, 70, 56, 28, 8, 1, -1, 8, 36, 84, 126, 126, 84, 36, 9, 1, -1, 9, 45, 120, 210, 252, 210, 120, 45, 10, 1, -1, 10, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 1
Examples
{-1}, {-1, 1, 1}, {-1, 2, 3, 1}, {-1, 3, 6, 4, 1}, {-1, 4, 10, 10,5, 1}, {-1, 5, 15, 20, 15, 6, 1}, {-1, 6, 21, 35, 35, 21, 7, 1}, {-1, 7, 28, 56, 70, 56, 28, 8, 1}, {-1, 8, 36, 84, 126, 126, 84, 36, 9, 1}, {-1, 9, 45, 120, 210, 252, 210, 120, 45, 10, 1}, {-1, 10, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1}
References
- Markku Halmetoja, et al.,"On Direct and Inverse Proportionality", American Math Monthly, volume 114, number 10, Dec 2007, pages 871-881.
- McKean and Moll, Elliptic Curves, Function Theory,Geometry, Arithmetic, Cambridge University Press, New York, 199, page 172
Programs
-
Mathematica
f[x_, n_] = (c*x + d)^(2*n + 1) - (a*x + b) a = 1; c = 1; b = 2; d = 1; Table[CoefficientList[f[x, n], x], {n, 0, 5, 1/2}] Flatten[%]
Formula
p(x,n)=(c*x + d)^(2*n + 1) - (a*x + b); a = 1; c = 1; b = 2; d = 1; t(n,m)=CoefficientList[p(x,n),x];
Comments