A135400 a(n) = (4*n^4 - 4*n^3 - n^2 + 3*n)/2.
1, 17, 108, 382, 995, 2151, 4102, 7148, 11637, 17965, 26576, 37962, 52663, 71267, 94410, 122776, 157097, 198153, 246772, 303830, 370251, 447007, 535118, 635652, 749725, 878501, 1023192, 1185058, 1365407, 1565595
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A001844.
Programs
-
Maple
seq(2*n^4-2*n^3-1/2*n^2+3/2*n,n=1..30); for n from 1 to 30 do b[n]:=2*n*(n-1)+1 od: seq(((n+b[n])^2-n-3*b[n]+2)/2,n=1..30);
-
Mathematica
Table[2n^4-2n^3-n^2/2+(3n)/2,{n,30}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,17,108,382,995},30] (* Harvey P. Dale, May 25 2012 *)
-
PARI
a(n)=n*(4*n^3-4*n^2-n+3)/2 \\ Charles R Greathouse IV, Oct 12 2016
Formula
G.f.: (2*x^4 + 33*x^3 + 12*x^2 + x)/(1-x)^5.
E.g.f.: (1/2)*(4*x^4 + 20*x^3 + 15*x^2 + 2*x)*exp(x).
a(1)=1, a(2)=17, a(3)=108, a(4)=382, a(5)=995, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, May 25 2012
Comments