cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135400 a(n) = (4*n^4 - 4*n^3 - n^2 + 3*n)/2.

Original entry on oeis.org

1, 17, 108, 382, 995, 2151, 4102, 7148, 11637, 17965, 26576, 37962, 52663, 71267, 94410, 122776, 157097, 198153, 246772, 303830, 370251, 447007, 535118, 635652, 749725, 878501, 1023192, 1185058, 1365407, 1565595
Offset: 1

Views

Author

Miklos Kristof, Dec 11 2007

Keywords

Comments

Form the infinite matrix:
1 2 4 7 11 ...
3 5 8 12 17 ...
6 9 13 18 24 ...
10 14 19 25 32 ...
15 20 26 33 41 ...
...
The diagonal elements are b(n) = 1, 5, 13, 25, 41, ... = 2*n*(n-1)+1 = A001844(n-1).
M(n,m) = ((n+m)^2-n-3*m+2)/2.
a(n) = M(n,b(n)) = M(1,1), M(2,5), M(3,13), M(4,25), M(5,41), ...
Let us define the PHI algebra as follows:
The basis of the PHI algebra is the PHI(1), PHI(2), PHI(3), ... elements, and the production rules are:
PHI(M(n,m))*PHI(n) = PHI(m) and every other production is zero.
An element of the PHI algebra is X = Sum_{n>=1} c(n)*PHI(n), where c(n) are real or complex constants.
UNIT = Sum_{n>=1} PHI(b(n)) = PHI(1) + PHI(5) + PHI(13) + PHI(25)+ ...
For every X elements: UNIT*X = X.
OMEGA = Sum_{n>=1} PHI(n) = PHI(1) + PHI(2) + PHI(3) + ...
ULTRA = Sum_{n>=1} PHI(a(n)) = PHI(1) + PHI(17) + PHI(108) + PHI(382) + ...
ULTRA*OMEGA = UNIT.
The PHI algebra is a nonassociative, but universal algebra; every finite or countable algebra can be modeled in the PHI algebra.

Crossrefs

Cf. A001844.

Programs

  • Maple
    seq(2*n^4-2*n^3-1/2*n^2+3/2*n,n=1..30); for n from 1 to 30 do b[n]:=2*n*(n-1)+1 od: seq(((n+b[n])^2-n-3*b[n]+2)/2,n=1..30);
  • Mathematica
    Table[2n^4-2n^3-n^2/2+(3n)/2,{n,30}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,17,108,382,995},30] (* Harvey P. Dale, May 25 2012 *)
  • PARI
    a(n)=n*(4*n^3-4*n^2-n+3)/2 \\ Charles R Greathouse IV, Oct 12 2016

Formula

G.f.: (2*x^4 + 33*x^3 + 12*x^2 + x)/(1-x)^5.
E.g.f.: (1/2)*(4*x^4 + 20*x^3 + 15*x^2 + 2*x)*exp(x).
a(1)=1, a(2)=17, a(3)=108, a(4)=382, a(5)=995, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, May 25 2012