A135406 Sum of squares of gaps between consecutive semiprimes.
4, 13, 14, 30, 31, 67, 68, 77, 78, 127, 128, 129, 138, 139, 188, 197, 201, 217, 221, 222, 238, 247, 263, 288, 297, 322, 331, 332, 333, 349, 353, 354, 355, 476, 501, 517, 526, 527, 531, 532, 533, 569, 585, 586, 635, 636, 637, 641, 642, 723, 732, 733, 737, 762
Offset: 1
Examples
a(10) = (6-4)^2 + (9-6)^2 + (10-9)^2 + (14-10)^2 + (15-14)^2 + (21-15)^2 + (22-21)^2 + (25-22)^2 + (26-25)^2 + (33-26)^2 = (2^2) + (3^2) + (1^2) + (4^2) + (1^2) + (6^2) + (1^2) + (3^2) + (1^2) + (7^2) = 127.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A001358 := proc(n) option remember ; local a ; if n = 1 then 4; else for a from A001358(n-1)+1 do if numtheory[bigomega](a) = 2 then RETURN(a) ; fi ; od: fi ; end: A065516 := proc(n) A001358(n+1)-A001358(n) ; end: A135406 := proc(n) add( (A065516(k))^2,k=1..n) ; end: seq(A135406(n),n=1..80) ; # R. J. Mathar, Jan 07 2008
-
Mathematica
Accumulate[Differences[Select[Range[200],PrimeOmega[#]==2&]]^2] (* Harvey P. Dale, Mar 05 2015 *)
Extensions
More terms from R. J. Mathar, Jan 07 2008
Comments