A135416 a(n) = A036987(n)*(n+1)/2.
1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Links
Programs
-
Maple
GS:=proc(i,j,M) local a,n; a:=array(1..2*M+1); a[1]:=1; for n from 1 to M do a[2*n] :=[0,1,a[n],a[n]+1,2*a[n],2*a[n]+1][i]; a[2*n+1]:=[0,1,a[n],a[n]+1,2*a[n],2*a[n]+1][j]; od: a:=convert(a,list); RETURN(a); end; GS(1,5,200):
-
Mathematica
i = 1; j = 5; Clear[a]; a[1] = 1; a[n_?EvenQ] := a[n] = {0, 1, a[n/2], a[n/2]+1, 2*a[n/2], 2*a[n/2]+1}[[i]]; a[n_?OddQ] := a[n] = {0, 1, a[(n-1)/2], a[(n-1)/2]+1, 2*a[(n-1)/2], 2*a[(n-1)/2]+1}[[j]]; Array[a, 105] (* Jean-François Alcover, Sep 12 2013 *)
-
PARI
A048298(n) = if(!n,0,if(!bitand(n,n-1),n,0)); A135416(n) = (A048298(n+1)/2); \\ Antti Karttunen, Jul 22 2018
-
Python
def A135416(n): return int(not(n&(n+1)))*(n+1)>>1 # Chai Wah Wu, Jul 06 2022
Formula
G.f.: sum{k>=1, 2^(k-1)*x^(2^k-1) }.
Recurrence: a(2n+1) = 2a(n), a(2n) = 0, starting a(1) = 1.
Extensions
Formulae and comments by Ralf Stephan, Jun 20 2014
Comments