cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135451 Triangular function from the characteristic polynomials of the inverse Hilbert matrices.

Original entry on oeis.org

1, 1, -1, 12, -16, 1, 2160, -3312, 381, -1, 6048000, -10137600, 1603680, -10496, 1, 266716800000, -476703360000, 92708406000, -1022881200, 307505, -1, 186313420339200000, -349935855575040000, 78981336366912000, -1242627237734400, 750409713900, -9316560, 1
Offset: 0

Views

Author

Roger L. Bagula, Dec 14 2007

Keywords

Comments

Triangle read by rows: for 0 <= k <= n, T(n,k) is the coefficient of lambda^k in det(H^(-1) - lambda I) where H is the n x n Hilbert matrix.
Row sums are: 1, 0, -3, -772, -2496415, -118300727696, -85882975706265059, -972835586209103886374316, -173520203650301344466515679407359, -489847775570499454780372858733881836257416, -21954569246037949585920541114453120558720536422853379

Examples

			{1},
{1, -1},
{12, -16, 1},
{2160, -3312, 381, -1},
{6048000, -10137600, 1603680, -10496, 1},
{266716800000, -476703360000, 92708406000, -1022881200, 307505, -1},
{186313420339200000, -349935855575040000, 78981336366912000, -1242627237734400, 750409713900, -9316560, 1}
		

Crossrefs

Cf. A005249.

Programs

  • Maple
    f:= proc(n) uses LinearAlgebra;
    local lambda, P,j;
    P:= CharacteristicPolynomial(HilbertMatrix(n),lambda)/Determinant(HilbertMatrix(n));
    seq(coeff(P,lambda,n-j),j=0..n);
    end proc:
    seq(f(n),n=0..10); # Robert Israel, Oct 05 2016
  • Mathematica
    << LinearAlgebra`MatrixManipulation`; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[Inverse[HilbertMatrix[n]], x], x], {n, 1, 10}]]; Flatten[a]

Formula

t(n,m)=CoefficientList[CharacteristicPolynomial[Inverse[HilbertMatrix[n]], x], x]

Extensions

Edited by Robert Israel, Oct 05 2016