A135451 Triangular function from the characteristic polynomials of the inverse Hilbert matrices.
1, 1, -1, 12, -16, 1, 2160, -3312, 381, -1, 6048000, -10137600, 1603680, -10496, 1, 266716800000, -476703360000, 92708406000, -1022881200, 307505, -1, 186313420339200000, -349935855575040000, 78981336366912000, -1242627237734400, 750409713900, -9316560, 1
Offset: 0
Examples
{1}, {1, -1}, {12, -16, 1}, {2160, -3312, 381, -1}, {6048000, -10137600, 1603680, -10496, 1}, {266716800000, -476703360000, 92708406000, -1022881200, 307505, -1}, {186313420339200000, -349935855575040000, 78981336366912000, -1242627237734400, 750409713900, -9316560, 1}
Links
- Robert Israel, Table of n, a(n) for n = 0..902 (rows 0 to 41, flattened)
- Eric Weisstein's World of Mathematics, Hilbert matrix
Crossrefs
Cf. A005249.
Programs
-
Maple
f:= proc(n) uses LinearAlgebra; local lambda, P,j; P:= CharacteristicPolynomial(HilbertMatrix(n),lambda)/Determinant(HilbertMatrix(n)); seq(coeff(P,lambda,n-j),j=0..n); end proc: seq(f(n),n=0..10); # Robert Israel, Oct 05 2016
-
Mathematica
<< LinearAlgebra`MatrixManipulation`; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[Inverse[HilbertMatrix[n]], x], x], {n, 1, 10}]]; Flatten[a]
Formula
t(n,m)=CoefficientList[CharacteristicPolynomial[Inverse[HilbertMatrix[n]], x], x]
Extensions
Edited by Robert Israel, Oct 05 2016
Comments