A135509 Nonnegative integers c such that there are nonnegative integers a and b that satisfy a^(1/2) + b^(1/2) = c^(1/2) and a^2 + b = c.
0, 1, 25, 225, 1156, 4225, 12321, 30625, 67600, 136161, 255025, 450241, 756900, 1221025, 1901641, 2873025, 4227136, 6076225, 8555625, 11826721, 16080100, 21538881, 28462225, 37149025, 47941776, 61230625, 77457601, 97121025
Offset: 0
Examples
For a = 9, b = 144, and c = 225, we obtain 9^(1/2) + 144^(1/2) = 225^(1/2) and 9^2 + 144 = 225. Thus, c = 225 is an entry in this sequence.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Mathematica
Table[(n + n^3)^2/4, {n, 0, 25}] (* G. C. Greubel, Oct 16 2016 *)
-
PARI
flt2(n) = {local(a, b); for(a=0, n, b = (a^3+a)/2; print1(b^2", "))} /* edited by Petros Hadjicostas, Dec 21 2019 */
Formula
From Colin Barker, May 02 2012: (Start)
a(n) = (n + n^3)^2/4 = A006003(n)^2.
G.f.: x*(1 + x)*(1 + 4*x + x^2)*(1 + 13*x + x^2)/(1 - x)^7. (End)
E.g.f.: (1/4)*x*(4 + 46*x + 102*x^2 + 67*x^3 + 15*x^4 + x^5)*exp(x). - G. C. Greubel, Oct 16 2016
Comments