cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135544 Decimal expansion of (-1)^(I Pi).

Original entry on oeis.org

0, 0, 0, 0, 5, 1, 7, 2, 3, 1, 8, 6, 2, 0, 3, 8, 1, 2, 3, 0, 6, 1, 4, 5, 4, 6, 5, 0, 9, 0, 3, 8, 2, 3, 9, 3, 6, 9, 5, 5, 7, 8, 7, 6, 9, 6, 9, 8, 3, 6, 6, 8, 0, 8, 9, 4, 1, 4, 2, 7, 6, 5, 8, 8, 1, 8, 4, 7, 1, 6, 8, 3, 1, 5, 1, 0, 3, 2, 3, 0, 5, 6, 7, 6, 2, 0, 6, 8, 5, 5, 9, 8, 1, 9, 5, 3, 1, 9, 3, 3, 3
Offset: 0

Views

Author

Marvin Ray Burns, Feb 22 2008, Feb 23 2008

Keywords

Examples

			(-1)^(I*Pi) = exp(-Pi)^(Pi) = 0.000051723186...
		

Crossrefs

Programs

  • Mathematica
    N[(-1)^(I Pi), 1000] FullSimplify[(-1)^(I Pi) == Exp[ -Pi]^Pi == (Exp[ -(1/2)*Pi])^(2*Pi) == Sqrt[Exp[ -Pi]^Pi/(Exp[Pi]^Pi)] == Exp[(-1/2*Pi)]^(Gamma[1/6]*Gamma[5/6]) == 1/(Sqrt[Exp[Pi]^(2*Pi)]) == (Exp[ -(1/2)*Pi])^(2*Pi) == Exp[ -Pi^2]]
    Join[{0, 0, 0, 0}, RealDigits[(Exp[-Pi])^(Pi), 10, 96][[1]]] (* G. C. Greubel, Oct 18 2016 *)
  • PARI
    exp(-Pi^2) \\ Charles R Greathouse IV, Jan 23 2025
    
  • PARI
    real((-1)^(I*Pi)) \\ Charles R Greathouse IV, Jan 23 2025

Formula

a(n) = (-1)^(I Pi) = exp(-Pi)^Pi = (exp( -(1/2)*Pi))^(2*Pi) = sqrt(exp( -Pi)^Pi/(exp(Pi)^Pi)) = exp[(-1/2*Pi)]^(Gamma[1/6]*Gamma[5/6]) = 1/(sqrt[exp[Pi]^(2*Pi)]) = (exp[ -(1/2)*Pi])^(2*Pi) = exp[ -Pi^2].

Extensions

Offset corrected R. J. Mathar, Jan 26 2009