cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135551 Number of bases b, 1 < b < n, in which n is a palindrome.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 1, 2, 2, 2, 3, 1, 2, 2, 2, 3, 3, 3, 3, 1, 3, 4, 2, 2, 4, 2, 4, 3, 4, 2, 3, 3, 3, 3, 3, 2, 5, 2, 3, 2, 5, 2, 4, 2, 3, 4, 4, 1, 5, 2, 4, 4, 5, 1, 4, 4, 4, 4, 2, 2, 6, 2, 3, 5, 4, 5, 4, 3, 4, 2, 4, 2, 6, 3, 3, 3, 3, 2, 6, 1, 7, 3, 4, 2, 6, 5, 3, 2, 5, 2, 5, 4, 5, 4, 2, 2, 6, 2, 5, 4, 7, 2, 4, 1, 6
Offset: 0

Views

Author

John P. Linderman, Feb 26 2008, Feb 28 2008

Keywords

Comments

Every integer n is a palindrome when expressed in unary, or in base n-1 (where it will be 11).
First occurrence in A037183.
a(n) is always less than A001221(n) except for 2 and 6; a(n) is always less than A001222(n) except for even powers of twos and 6, 12, 81, 243, 625, 729, 2187, 19683, 59049, ..., . - Robert G. Wilson v, Jul 17 2016

Crossrefs

Essentially the same as A065531.

Programs

  • Mathematica
    palindromicBases[n_] := Module[{p}, Table[p = IntegerDigits[n, b]; If[p == Reverse[p], {b, p}, Sequence @@ {}], {b, 2, n - 1}]]; Array[ Length@ palindromicBases@# &, 105, 0] (* Robert G. Wilson v, Oct 15 2014 *)
    palQ[n_Integer, base_Integer] := Module[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]];
    f[n_] := Block[{s = Ceiling@ Sqrt@ n, b = 2, c = If[ IntegerQ@ Sqrt[4n + 1], -1, 0]}, While[b < s, If[ palQ[n, b], c++]; b++]; c + Count[ Mod[n, Range[s - 1]], 0]]; f[0] = 0; Array[f, 105, 0] (* much faster for large Ns *) (* Robert G. Wilson v, Oct 20 2014 *)

Formula

a(n) = A135549(n) + 1 for n>2; otherwise a(n) = A135549(n) = 0. - Michel Marcus, Oct 15 2014
a(n) = A126071(n) - 1. - Michel Marcus, Mar 07 2015