cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: John P. Linderman

John P. Linderman's wiki page.

John P. Linderman has authored 7 sequences.

A171001 Binomial(n-k,k)^2 where k = ceiling(n/4).

Original entry on oeis.org

1, 0, 1, 4, 9, 9, 36, 100, 225, 400, 1225, 3136, 7056, 15876, 44100, 108900, 245025, 627264, 1656369, 4008004, 9018009, 25050025, 64128064, 153165376, 344622096, 1012766976, 2538950544, 6009350400, 13521038400, 41408180100, 102252852900, 240407818596
Offset: 0

Author

John P. Linderman, Aug 31 2010

Keywords

Crossrefs

A lower bound for A094837. Cf. A171002, A171003, A171006.

A171002 Binomial(n-k,k) * binomial(n-k-1,k+1) where k = ceiling(n/4).

Original entry on oeis.org

0, 0, 0, 3, 0, 6, 40, 150, 100, 525, 1960, 5880, 7056, 26460, 83160, 228690, 365904, 1189188, 3435432, 9018009, 17177160, 51531480, 141581440, 361032672, 773641440, 2204878104, 5859116640, 14647791600, 34178180400, 93989996100, 243891989880, 601019546490
Offset: 1

Author

John P. Linderman, Sep 01 2010

Keywords

Crossrefs

A171006 Binomial(n-k-1,k) * binomial(n-k,k+1) where k = ceiling(n/4).

Original entry on oeis.org

0, 0, 0, 1, 6, 1, 12, 60, 200, 150, 700, 2450, 7056, 8820, 31752, 97020, 261360, 426888, 1359072, 3864861, 10020010, 19324305, 57257200, 155739584, 393853824, 851005584, 2405321568, 6347376360, 15774544800, 37026362100, 101219995800, 261312846300
Offset: 0

Author

John P. Linderman, Sep 02 2010

Keywords

Crossrefs

Another lower bound for A094837. Cf. A171001, A171002, A171003.

A171003 A lower bound for A094837.

Original entry on oeis.org

1, 2, 4, 9, 18, 40, 100, 225, 525, 1225, 3136, 7056, 17640, 44100, 108900, 261360, 637065, 1656369, 4008004, 10020010, 25050025, 64128064, 155739584, 393853824, 1012766976, 2538950544, 6347376360, 15774544800, 41408180100
Offset: 1

Author

John P. Linderman, Sep 01 2010

Keywords

Comments

See Perl script for explanation.

A135550 Number of bases b, 1 < b < n-1, in which n is a palindrome, allowing leading zeros when testing if a number is a palindrome.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 1, 3, 2, 4, 0, 5, 1, 3, 3, 5, 2, 6, 0, 6, 4, 2, 1, 8, 2, 4, 4, 6, 1, 8, 2, 6, 3, 4, 2, 10, 1, 3, 3, 9, 1, 8, 1, 4, 5, 4, 0, 11, 2, 6, 4, 6, 0, 8, 4, 8, 4, 2, 1, 14, 1, 4, 6, 8, 5, 7, 2, 7, 3, 6, 1, 14, 2, 3, 5, 4, 2, 9, 0, 12, 5, 4, 1, 14, 5, 3, 2, 7, 1, 13, 4, 6, 4, 2, 2
Offset: 0

Author

John P. Linderman, Feb 26 2008, Feb 28 2008

Keywords

Comments

Every integer n is a palindrome when expressed in unary, or in base n-1 (where it will be 11). So here we assume 1 < b < n-1.
Here 4 = 100 counts as a palindrome in base 2, since 00100 is palindromic.

Crossrefs

A135551 Number of bases b, 1 < b < n, in which n is a palindrome.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 1, 2, 2, 2, 3, 1, 2, 2, 2, 3, 3, 3, 3, 1, 3, 4, 2, 2, 4, 2, 4, 3, 4, 2, 3, 3, 3, 3, 3, 2, 5, 2, 3, 2, 5, 2, 4, 2, 3, 4, 4, 1, 5, 2, 4, 4, 5, 1, 4, 4, 4, 4, 2, 2, 6, 2, 3, 5, 4, 5, 4, 3, 4, 2, 4, 2, 6, 3, 3, 3, 3, 2, 6, 1, 7, 3, 4, 2, 6, 5, 3, 2, 5, 2, 5, 4, 5, 4, 2, 2, 6, 2, 5, 4, 7, 2, 4, 1, 6
Offset: 0

Author

John P. Linderman, Feb 26 2008, Feb 28 2008

Keywords

Comments

Every integer n is a palindrome when expressed in unary, or in base n-1 (where it will be 11).
First occurrence in A037183.
a(n) is always less than A001221(n) except for 2 and 6; a(n) is always less than A001222(n) except for even powers of twos and 6, 12, 81, 243, 625, 729, 2187, 19683, 59049, ..., . - Robert G. Wilson v, Jul 17 2016

Crossrefs

Essentially the same as A065531.

Programs

  • Mathematica
    palindromicBases[n_] := Module[{p}, Table[p = IntegerDigits[n, b]; If[p == Reverse[p], {b, p}, Sequence @@ {}], {b, 2, n - 1}]]; Array[ Length@ palindromicBases@# &, 105, 0] (* Robert G. Wilson v, Oct 15 2014 *)
    palQ[n_Integer, base_Integer] := Module[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]];
    f[n_] := Block[{s = Ceiling@ Sqrt@ n, b = 2, c = If[ IntegerQ@ Sqrt[4n + 1], -1, 0]}, While[b < s, If[ palQ[n, b], c++]; b++]; c + Count[ Mod[n, Range[s - 1]], 0]]; f[0] = 0; Array[f, 105, 0] (* much faster for large Ns *) (* Robert G. Wilson v, Oct 20 2014 *)

Formula

a(n) = A135549(n) + 1 for n>2; otherwise a(n) = A135549(n) = 0. - Michel Marcus, Oct 15 2014
a(n) = A126071(n) - 1. - Michel Marcus, Mar 07 2015

A135549 Number of bases b, 1 < b < n-1, in which n is a palindrome.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 0, 1, 1, 1, 2, 2, 2, 2, 0, 2, 3, 1, 1, 3, 1, 3, 2, 3, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 1, 4, 1, 3, 1, 2, 3, 3, 0, 4, 1, 3, 3, 4, 0, 3, 3, 3, 3, 1, 1, 5, 1, 2, 4, 3, 4, 3, 2, 3, 1, 3, 1, 5, 2, 2, 2, 2, 1, 5, 0, 6, 2, 3, 1, 5, 4, 2, 1, 4, 1, 4, 3, 4, 3, 1, 1, 5, 1, 4, 3, 6, 1, 3, 0, 5
Offset: 0

Author

John P. Linderman, Feb 26 2008, Feb 28 2008

Keywords

Comments

Every integer n is a palindrome when expressed in unary, or in base n-1 (where it will be 11). So here we assume 1 < b < n-1.
Records for a(n)>=1 are in A107129. - Dmitry Kamenetsky, Oct 22 2015

Crossrefs

Cf. A016038 (non-palindromic numbers in any base 1 < b < n-1)

Programs

  • Mathematica
    a = {0, 0, 0}; For[n = 4, n < 100, n++, c = 0; For[b = 2, b < n - 1, b++, If[IntegerDigits[n, b] == Reverse[IntegerDigits[n, b]], c++ ]]; AppendTo[a, c]]; a (* Stefan Steinerberger, Feb 27 2008 *)
    Table[cnt=0; Do[d=IntegerDigits[n,b]; If[d==Reverse[d], cnt++ ], {b,2,n-2}]; cnt, {n,0,100}] (* T. D. Noe, Feb 28 2008 *)
    Table[Total[Boole[Table[PalindromeQ[IntegerDigits[n,b]],{b,2,n-2}]]],{n,0,120}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 14 2020 *)

Formula

a(n) = A065531(n)-1 = A126071(n)-2 for n>2. - T. D. Noe, Feb 28 2008