A135573 Array T(n,m) of super ballot numbers read along ascending antidiagonals.
1, 3, 1, 10, 2, 2, 35, 5, 3, 5, 126, 14, 6, 6, 14, 462, 42, 14, 10, 14, 42, 1716, 132, 36, 20, 20, 36, 132, 6435, 429, 99, 45, 35, 45, 99, 429, 24310, 1430, 286, 110, 70, 70, 110, 286, 1430, 92378, 4862, 858, 286, 154, 126, 154, 286, 858, 4862
Offset: 0
Examples
Array with rows n >= 0 and columns m >= 0 starts: [n\m] 0 1 2 3 4 5 6 7 8 ... ------------------------------------------------------- [0] 1 1 2 5 14 42 132 429 1430 ... [A000108] [1] 3 2 3 6 14 36 99 286 858 ... [A007054] [2] 10 5 6 10 20 45 110 286 780 ... [A007272] [3] 35 14 14 20 35 70 154 364 910 ... [A348893] [4] 126 42 36 45 70 126 252 546 1260 ... [A348898] [5] 462 132 99 110 154 252 462 924 1980 ... [A348899] [6] 1716 429 286 286 364 546 924 1716 3432 ... ... Seen as a triangle: [0] 1; [1] 3, 1; [2] 10, 2, 2; [3] 35, 5, 3, 5; [4] 126, 14, 6, 6, 14; [5] 462, 42, 14, 10, 14, 42; [6] 1716, 132, 36, 20, 20, 36, 132; [7] 6435, 429, 99, 45, 35, 45, 99, 429. . T(20, 100000) = 2.442634...*10^60129. Asymptotic formula: 2.442627..*10^60129.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 antidiagonals
- E. Allen and I. Gheorghiciuc, A Weighted Interpretation for the Super Catalan Numbers, J. Int. Seq. 17 (2014) # 14.10.7, Table 1.
- Ira M. Gessel, Super ballot numbers, J. Symb. Comput. vol 14, iss 2-3 (1992) pp 179-194.
Crossrefs
Programs
-
Maple
T := proc(n,m) (2*n+1)!/n!*(2*m)!/m!/(m+n+1)! ; end proc: for d from 0 to 12 do for c from 0 to d do printf("%d, ",T(d-c,c)) ; od: od: # Alternatively, printed as rows: A135573 := (n, m) -> (1/(2*Pi))*int(x^m*(4-x)^(n+1/2)*x^(-1/2), x=0..4): for n from 0 to 9 do seq(A135573(n, m), m = 0..9) od; # Peter Luschny, Nov 03 2021
-
Mathematica
T[n_, m_] := (2*n+1)!/n!*(2*m)!/m!/(m+n+1)!; Table[T[n-m, m], {n, 0, 12}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2014, after Maple *) T[n_, m_] := 4^(m+n) Hypergeometric2F1[1/2+n, 1/2-m, 3/2+n, 1] / ((2 n + 1) Pi); Table[T[n - m + 1, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Peter Luschny, Nov 03 2021 *)
-
Sage
def T(n, m): return (-1)^m*4^(n + 1 + m)*binomial(n + 1/2, n + 1 + m)/2 for n in range(7): print([T(n, m) for m in range(9)]) # Peter Luschny, Nov 04 2021
Formula
T(n, m) = (2*n + 1)!*(2*m)! / (n!*m!*(m + n + 1)!).
From Peter Luschny, Nov 03 2021: (Start)
T(n, m) = (1/(2*Pi))*Integral_{x=0..4} x^m*(4 - x)^(n + 1/2)*x^(-1/2). These are integral representations of the n-th moment of a positive function on [0, 4]. The representations are unique.
T(n, m) = 4^(m + n)*hypergeom([1/2 + n, 1/2 - m], [3/2 + n], 1)/((2*n + 1)*Pi).
For fixed n and m -> oo: T(n, m) ~ (1/(2*Pi))*4^(n + m + 1)*(Gamma(3/2 + n) / m^(3/2 + n))*(1 - (2*n + 3)^2 / (8*m)) . (End)
T(n, m) = (-1)^m*4^(n + 1 + m)*binomial(n + 1/2, n + 1 + m)/2. - Peter Luschny, Nov 04 2021
From Peter Bala, Mar 12 2023: (Start)
T(n,m) = 2*(2*n + 1 )/(n + m + 1) * T(n-1,m) with T(0,m) = Catalan(m), where Catalan(m) = A000108(m).
T(n,m) = Sum_{k = 0..n} (-1)^k*4^(n-k)*binomial(n,k)*Catalan(m+k) (easily verified using Maple's sumrecursion command). Thus T(n,m) is an integer. (End)
Comments