cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A135575 a(n) = A135574(n+1) - 2*A135574(n).

Original entry on oeis.org

0, 3, -5, 9, -16, 30, -63, 129, -257, 513, -1024, 2046, -4095, 8193, -16385, 32769, -65536, 131070, -262143, 524289, -1048577, 2097153, -4194304, 8388606, -16777215, 33554433, -67108865, 134217729, -268435456, 536870910, -1073741823, 2147483649, -4294967297, 8589934593
Offset: 0

Views

Author

Paul Curtz, Feb 24 2008

Keywords

Programs

  • Maple
    A024495 := proc(n) option remember ; if n <=1 then 0 ; elif n = 2 then 1; elif n = 3 then 3 ; else A024495(n-1)-A024495(n-2)+2^(n-2) ; fi ; end: A135574 := proc(n) option remember ; A024495(2*floor(n/2)+1 - ( n mod 2)) ; end: A135575 := proc(n) A135574(n+1)-2*A135574(n) ; end: seq(A135575(n),n=0..80) ; # R. J. Mathar, Mar 31 2008
  • Mathematica
    LinearRecurrence[{-2, -1, -2, -1, -2}, {0, 3, -5, 9, -16}, 25] (* G. C. Greubel, Oct 19 2016 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -2,-1,-2,-1,-2]^n*[0;3;-5;9;-16])[1,1] \\ Charles R Greathouse IV, Oct 19 2016

Formula

G.f.: x*(3*x^3+2*x^2+x+3)/((2*x+1)*(x^2+x+1)*(x^2-x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(n) + 2*a(n-1) + a(n-2) + 2*a(n-3) + a(n-4) + 2*a(n-5) = 0. - G. C. Greubel, Oct 19 2016

Extensions

More terms from R. J. Mathar, Mar 31 2008

A137223 a(n) = A135574(3*n) + A135574(3*n+1) + A135574(3*n+2).

Original entry on oeis.org

3, 18, 234, 1110, 15018, 70998, 961194, 4543830, 61516458, 290805078, 3937053354, 18611524950, 251971414698, 1191137596758, 16126170540714, 76232806192470, 1032074914605738, 4878899596318038, 66052794534767274, 312249574164354390
Offset: 0

Views

Author

Paul Curtz, Mar 07 2008

Keywords

Crossrefs

Cf. A135574.

Programs

  • Magma
    I:=[3,18,234]; [n le 3 select I[n] else -Self(n-1) +64*Self(n-2) +64*Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 05 2022
    
  • Mathematica
    LinearRecurrence[{-1,64,64}, {3,18,234}, 41] (* G. C. Greubel, Jan 05 2022 *)
  • Sage
    [((35 + 9*(-1)^n)*8^n - 8*(-1)^n)/12 for n in (0..40)] # G. C. Greubel, Jan 05 2022

Formula

From R. J. Mathar, Feb 07 2009: (Start)
a(n) = -a(n-1) + 64*a(n-2) + 64*a(n-3).
a(n) = (-8*(-1)^n + 35*8^n + 9*(-8)^n)/12.
G.f.: 3*(1 +7*x +20*x^2)/((1-8*x)*(1+8*x)*(1+x)). (End)

Extensions

More terms from R. J. Mathar, Feb 07 2009
Showing 1-2 of 2 results.