A135577 Numbers that have only the digit "1" as first, central and final digit. For numbers with 5 or more digits the rest of digits are "0".
1, 111, 10101, 1001001, 100010001, 10000100001, 1000001000001, 100000010000001, 10000000100000001, 1000000001000000001, 100000000010000000001, 10000000000100000000001, 1000000000001000000000001, 100000000000010000000000001, 10000000000000100000000000001
Offset: 1
Examples
---------------------------- n ............ a(n) ---------------------------- 1 ............. 1 2 ............ 111 3 ........... 10101 4 .......... 1001001 5 ......... 100010001 6 ........ 10000100001 7 ....... 1000001000001 8 ...... 100000010000001 9 ..... 10000000100000001 10 ... 1000000001000000001
Links
- G. C. Greubel, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Programs
-
Mathematica
Join[{1}, LinearRecurrence[{111, -1110, 1000}, {111, 10101, 1001001}, 25]] (* G. C. Greubel, Oct 19 2016 *) Join[{1},Table[FromDigits[Join[{1},PadRight[{},n,0],{1},PadRight[{},n,0],{1}]],{n,0,10}]] (* Harvey P. Dale, Aug 15 2022 *)
-
PARI
Vec(-x*(2000*x^3-1110*x^2+1)/((x-1)*(10*x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
Formula
a(n) = A135576(n), written in base 2.
Also, a(1)=1, for n>1; a(n)=(concatenation of 1, n-2 digits 0, 1, n-2 digits 0 and 1).
From Colin Barker, Sep 16 2013: (Start)
a(n) = 1 + 10^(n-1) + 100^(n-1) for n>1.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>4.
G.f.: x*(2000*x^3 - 1110*x^2 + 1)/((1-x)*(10*x-1)*(100*x-1)). (End)
E.g.f.: (-111 - 200*x + 100*exp(x) + 10*exp(10*x) + exp(100*x))/100. - Elmo R. Oliveira, Jun 13 2025
Comments