A135589 Triangle T(n,k) read by rows: number of k X k symmetric (0,1)-matrices with exactly n entries equal to 1 and no zero rows or columns.
1, 0, 1, 0, 0, 2, 0, 0, 2, 4, 0, 0, 1, 9, 10, 0, 0, 0, 12, 36, 26, 0, 0, 0, 10, 76, 140, 76, 0, 0, 0, 6, 116, 420, 540, 232, 0, 0, 0, 3, 138, 915, 2160, 2142, 764, 0, 0, 0, 1, 136, 1605, 6230, 10766, 8624, 2620, 0, 0, 0, 0, 116, 2372, 14436, 39130, 53312, 35856, 9496, 0, 0, 0, 0
Offset: 0
Examples
1; 0, 1; 0, 0, 2; 0, 0, 2, 4; 0, 0, 1, 9, 10; 0, 0, 0, 12, 36, 26; 0, 0, 0, 10, 76, 140, 76; 0, 0, 0, 6, 116, 420, 540, 232; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Programs
-
PARI
T(n)=my(A=O(x*x^n), v=vector(n+1, k, k--;Col(A+(1+x+A)^k*(1+x^2+A)^binomial(k,2)))); Mat(vector(n+1, k, k--; sum(j=0, k, (-1)^(k-j)*binomial(k,j)*v[1+j]))) { my(M=T(10)); for(i=1, #M, print(M[i,1..i])) } \\ Andrew Howroyd, Feb 01 2024
Formula
G.f. of column k: Sum_{j=0..k} (-1)^(k-j) * binomial(k,j) * (1 + x)^j * (1 + x^2)^binomial(j,2). - Andrew Howroyd, Feb 01 2024