cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135589 Triangle T(n,k) read by rows: number of k X k symmetric (0,1)-matrices with exactly n entries equal to 1 and no zero rows or columns.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 2, 4, 0, 0, 1, 9, 10, 0, 0, 0, 12, 36, 26, 0, 0, 0, 10, 76, 140, 76, 0, 0, 0, 6, 116, 420, 540, 232, 0, 0, 0, 3, 138, 915, 2160, 2142, 764, 0, 0, 0, 1, 136, 1605, 6230, 10766, 8624, 2620, 0, 0, 0, 0, 116, 2372, 14436, 39130, 53312, 35856, 9496, 0, 0, 0, 0
Offset: 0

Views

Author

Vladeta Jovovic, Feb 25 2008

Keywords

Examples

			  1;
  0, 1;
  0, 0, 2;
  0, 0, 2,  4;
  0, 0, 1,  9,  10;
  0, 0, 0, 12,  36,  26;
  0, 0, 0, 10,  76, 140,  76;
  0, 0, 0,  6, 116, 420, 540, 232;
  ...
		

Crossrefs

Main diagonal gives A000085.
Row sums give A135588.
Column sums give A322661.

Programs

  • PARI
    T(n)=my(A=O(x*x^n), v=vector(n+1, k, k--;Col(A+(1+x+A)^k*(1+x^2+A)^binomial(k,2)))); Mat(vector(n+1, k, k--; sum(j=0, k, (-1)^(k-j)*binomial(k,j)*v[1+j])))
    { my(M=T(10)); for(i=1, #M, print(M[i,1..i])) } \\ Andrew Howroyd, Feb 01 2024

Formula

G.f. of column k: Sum_{j=0..k} (-1)^(k-j) * binomial(k,j) * (1 + x)^j * (1 + x^2)^binomial(j,2). - Andrew Howroyd, Feb 01 2024