A135607 Floor of the area of a circle in terms of its circumference n.
0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 7, 9, 11, 13, 15, 17, 20, 22, 25, 28, 31, 35, 38, 42, 45, 49, 53, 58, 62, 66, 71, 76, 81, 86, 91, 97, 103, 108, 114, 121, 127, 133, 140, 147, 154, 161, 168, 175, 183, 191, 198, 206, 215, 223, 232, 240, 249, 258, 267, 277, 286, 296, 305, 315
Offset: 0
Keywords
Examples
For a circle of circumference 10, the floor of the area A = floor(100/4/Pi) = 7.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
Table[Floor[n^2/(4*Pi)], {n,0,25}] (* G. C. Greubel, Oct 21 2016 *)
-
PARI
g(n) = for(c=0,n,a=c^2/4/Pi;print1(floor(a)","))
-
PARI
a(n) = n^2\(4*Pi); \\ Michel Marcus, Oct 22 2016
Formula
Area of a circle of radius r is A = Pi*r^2. Circumference of a circle of radius r is n = 2*Pi*r. Then area in terms of the circumference n is A = n^2/(4*Pi).