A135669 Triangular sequence of coefficients of characteristic polynomials of a tridiagonal matrix.
-1, 1, -1, 1, -1, 1, 1, -3, 3, -1, 1, -5, 8, -5, 1, 1, -7, 16, -16, 7, -1, 1, -9, 27, -38, 27, -9, 1, 1, -11, 41, -75, 75, -41, 11, -1, 1, -13, 58, -131, 170, -131, 58, -13, 1, 1, -15, 78, -210, 336, -336, 210, -78, 15, -1, 1, -17, 101, -316, 602, -742, 602, -316, 101, -17, 1
Offset: 1
Examples
Triangle begins: -1; 1, -1; 1, -1, 1; 1, -3, 3, -1; 1, -5, 8, -5, 1; 1, -7, 16, -16, 7, -1; 1, -9, 27, -38, 27, -9, 1; 1, -11, 41, -75, 75, -41, 11, -1; 1, -13, 58, -131, 170, -131, 58, -13, 1; 1, -15, 78, -210, 336, -336, 210, -78, 15, -1; 1, -17, 101, -316, 602, -742, 602, -316, 101, -17, 1;
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
Mathematica
a[n_, k_]:= If[n==1 && k > 1, -1, If[n==2, k, 1]]; c[n_, k_]:= If[n==1, -k-1, 0]; T[n_, m_, k_]:= If[n==m, a[n,k], If[n==m-1,1, If[n==m+1, c[n-1,k], 0]]]; M0[k_]:= Table[T[n, m, k], {n, 1, k}, {m, 1, k}]; TableForm[Table[M0[n], {n, 1, 4}]]; TableForm[Table[Inverse[M0[n]], {n, 1, 4}]]; Table[Factor[CharacteristicPolynomial[M0[n], x]], {n, 1, 10}]; Join[{{-1}}, Table[CoefficientList[CharacteristicPolynomial[M0[n], x], x], {n, 1, 10}]]//Flatten (* modified by G. C. Greubel, May 23 2019 *)
Formula
With the sequence function -(n+1) the tridiagonal matrix is formed by
upper subdiagonal: c(n,k) = if(n=1, -(k+1), 0),
diagonal: a(n,k) = if(n=1 & k > 1, -1, if(n=2, k, 1)),
lower subdiagonal: b(n) = 1,
where the triangle is formed by t(k) = M(i, j, k) for 1 <= j <= k, 1 <= i <= k,
and T(n) = coefficients of CharacteristicPolynomial(M(n), x).
Extensions
Edited by G. C. Greubel, May 23 2019
Comments