cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135712 a(n) = (4*n^3 + 11*n^2 + 9*n + 2)/2.

Original entry on oeis.org

1, 13, 48, 118, 235, 411, 658, 988, 1413, 1945, 2596, 3378, 4303, 5383, 6630, 8056, 9673, 11493, 13528, 15790, 18291, 21043, 24058, 27348, 30925, 34801, 38988, 43498, 48343, 53535, 59086, 65008, 71313, 78013, 85120, 92646, 100603, 109003, 117858, 127180
Offset: 0

Views

Author

N. J. A. Sloane, Mar 05 2008

Keywords

Comments

Binomial transform yields 1,12,23,12,0,0,0,0,0,0,.. - R. J. Mathar, Apr 21 2008

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, p. 83.

Crossrefs

Bisection of A002717 (odd part).
Partial sums of A033570. - Bruno Berselli, Nov 28 2013

Programs

  • Mathematica
    Table[(4*n^3 + 11*n^2 + 9*n + 2)/2,{n,0,25}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,13,48,118}, 25] (* G. C. Greubel, Oct 29 2016 *)

Formula

G.f.: (1 + 9*x + 2*x^2) / (1-x)^4. - R. J. Mathar, Apr 21 2008
From G. C. Greubel, Oct 29 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (1/2)*(2 + 24*x + 23*x^2 + 4*x^3)*exp(x). (End)
a(n) = ((2*n+1)*(2*n+3)*(4*n+3) - 1)/8 = (n+1)*(4*n^2 + 7*n + 2)/2, for n >= 0. See the Conway and Guy reference. - Wolfdieter Lang, Apr 16 2020