cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A155912 Let d(i) be the i-th digit of the decimal expansion of Pi = 3.1415926535897932384626433832795..., so that d(0) = 3, d(1) = 1, d(2) = 4, etc. Then a(0) = 3, a(n) = d(d(n)) for n>0.

Original entry on oeis.org

3, 1, 5, 1, 9, 3, 4, 2, 9, 1, 9, 5, 3, 6, 3, 1, 4, 1, 5, 5, 2, 4, 2, 5, 1, 1, 5, 1, 4, 6, 3, 9, 3, 4, 5, 5, 5, 1, 3, 6, 1, 2, 3, 1, 3, 3, 1, 6, 9, 1, 3, 9, 5, 4, 3, 3, 6, 5, 3, 5, 5, 9, 3, 4, 1, 3, 6, 5, 1, 2, 5, 3, 2, 4, 5, 2, 4, 3, 5, 3, 3, 5, 2, 4, 5, 3, 1, 5, 5, 4, 9, 1, 5, 4, 1, 1, 6, 3, 2, 6, 3, 5, 4, 1, 5
Offset: 0

Views

Author

Dan Brown (ddbhockey(AT)hotmail.com), Jan 30 2009

Keywords

Comments

This defines a constant 3.151934291953631... related to Pi in a peculiar way!

Crossrefs

Cf. A135725.
Cf. A119505. - Robert G. Wilson v, Mar 17 2009

Programs

  • Mathematica
    id = Rest@ RealDigits[ Pi, 10, 105][[1]]; id[[0]] = 3; id[[ id[[ 0]]]] = 3; Table[id[[ id[[ n]]]], {n, 0, 104}] (* Robert G. Wilson v, Mar 17 2009 *)

Extensions

Edited and extended by Zak Seidov and N. J. A. Sloane, Feb 10 2009
Sequence corrected by N. J. A. Sloane Aug 31 2009 using terms from the b-file

A156944 Let d(i) be the i-th digit of the decimal expansion of e = 2.71828182845..., so that d(1) = 2, d(2) = 7, d(3) = 1, etc. Then a(n) = d(10 - d(n)).

Original entry on oeis.org

8, 1, 2, 7, 8, 7, 2, 7, 8, 7, 8, 2, 2, 8, 8, 2, 8, 1, 2, 1, 8, 8, 8, 7, 1, 8, 1, 2, 1, 2, 8, 8, 8, 8, 8, 2, 1, 1, 2, 1, 8, 8, 1, 8, 2, 1, 8, 2, 2, 2, 2, 2, 2, 1, 8, 2, 8, 8, 2, 8, 1, 8, 8, 1, 1, 8, 8, 8, 1, 8, 8, 1, 8, 1, 2, 1, 2, 8, 1, 2, 2, 8, 2, 1, 2, 1, 7, 8, 2, 1, 7, 2, 8, 2, 2, 8, 8, 8, 8, 1, 8, 8, 1, 8, 8
Offset: 1

Views

Author

Zak Seidov, Feb 18 2009

Keywords

Crossrefs

Cf. A135725.

A157032 Let d(i) be the i-th digit of the decimal expansion of phi=1.6180339887498948482045868...,so that d(0) = 1, d(1) = 6, d(2) = 1, etc. Then a(0) = 1, thereafter a(n) = d(d(n)).

Original entry on oeis.org

1, 3, 6, 8, 1, 8, 8, 8, 8, 8, 9, 0, 8, 8, 8, 0, 8, 0, 8, 1, 1, 0, 3, 8, 3, 8, 8, 0, 8, 3, 3, 3, 8, 8, 6, 6, 9, 9, 1, 1, 8, 1, 8, 6, 9, 8, 8, 1, 3, 9, 3, 1, 8, 3, 1, 6, 8, 3, 0, 0, 8, 3, 1, 1, 9, 1, 3, 1, 3, 1, 0, 3, 1, 8, 6, 8, 8, 1, 1, 0, 0, 8, 9, 1, 9, 1, 1, 9, 1, 1, 0, 6, 8, 8, 8, 8, 6, 6, 8, 9, 0, 8, 0, 9, 3
Offset: 0

Views

Author

Dan Brown (ddbhockey(AT)hotmail.com), Feb 21 2009

Keywords

Comments

This defines a constant 1.368188888908880808110383880... related to Phi in a peculiar way!
All digits are one of the first 10 digits of Phi = A001622, so 2, 4, 5 and 7 never appear. [From R. J. Mathar, Mar 14 2009]

Crossrefs

Extensions

More digits from R. J. Mathar, Mar 14 2009
Showing 1-3 of 3 results.