A135749 a(n) = Sum_{k=0..n} binomial(n,k)*(n-k)^k*k^k.
1, 1, 3, 19, 217, 3821, 95761, 3214975, 137501505, 7226764921, 455941716481, 33983083953611, 2954163633223969, 296027886705639973, 33823026186790043841, 4363561123325076879991, 630392564294402819207041
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..250
Programs
-
Mathematica
Table[Sum[Binomial[n,k](n-k)^k k^k,{k,n}],{n,0,20}]+1 (* Harvey P. Dale, Oct 08 2012 *)
-
PARI
a(n)=sum(k=0,n,binomial(n,k)*(n-k)^k*k^k)
-
PARI
a(n)=n!*polcoeff(sum(k=0,n,exp((n-k)*k*x +x*O(x^n))*x^k/k!),n)
Formula
a(n) = n!*[x^n] Sum_{k=0..n} exp((n-k)*x)^k * x^k/k!.