cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A135771 Terms in A136112 which are not in A135768.

Original entry on oeis.org

5, 23, 51, 71, 72, 99, 123, 239, 263, 311, 359, 479, 599, 699, 743, 863, 911, 1031, 1103, 1151, 1431, 1563, 1583, 1823, 1851, 1863, 2111, 2543, 2663, 3023, 3119, 3191, 3291, 3671, 3719, 3863, 4131, 4203, 4271, 4463, 4671, 4703, 5039, 5231, 5351, 5391, 5399
Offset: 1

Views

Author

R. J. Mathar and M. F. Hasler, Feb 07 2008

Keywords

Comments

Pentagonal-Indices of terms in A136113 which are not in A135769.
A135768 resp. A135769 are subsequences of A136112 resp. A136113; the present sequence gives the indices of the elements of the former which are not in the latter: A136113(A135771(k)), k=1,2,3,... are the pentagonal numbers P(m) which are not the difference of two pentagonal numbers P(n)-P(q) with n,q>m, but only with n>m>q. A136112(A135771(k)) are the corresponding indices of the pentagonal numbers.

Examples

			The first terms of this sequence correspond to the following elements of A136113:
P_5 = P_7 - P_5,
P_23 = P_24 - P_7,
P_51 = P_66 - P_42,
P_71 = P_74 - P_21,
P_72 = P_80 - P_35,
P_99 = P_104 - P_32,
P_123 = P_144 - P_75,
P_239 = P_249 - P_70,
P_263 = P_274 - P_77,
P_311 = P_324 - P_91,
P_359 = P_374 - P_10.
		

Crossrefs

Programs

  • PARI
    P(n)=n*(3*n-1)/2
    isPent(t)=P(sqrtint((t*2)\3)+1)==t
    {for( i=1,999, for( j=1,i-1, isPent(P(i)+P(j))|next; for( k=i+1,(P(i)-1)\3, isPent(P(i)+P(k))&next(3)); print1(i", "); next(2)))}

Formula

Equals the difference set A136112 \ A135768.

A135769 Pentagonal numbers > 0 which are not the difference of two other pentagonal numbers > 0.

Original entry on oeis.org

1, 5, 12, 51, 92, 117, 176, 330, 477, 852, 1080, 4347, 9801, 13776, 24512, 27270, 39285, 69876, 88452, 124272, 137562, 220992, 268182, 315792, 354051, 403782, 523626, 612162, 629532, 699392, 796797, 919242, 1119312, 1158522, 1190376
Offset: 1

Views

Author

R. J. Mathar and M. F. Hasler, Feb 07 2008

Keywords

Comments

A subsequence of A136113, obtained by omitting A136113(A135771(k)), k=1,2,3,... ; i.e. those which are not the difference of two larger pentagonal numbers, but the difference of a larger and a smaller pentagonal number.
The definition ("...two other...") excludes the case P(n) = P(m)-P(n), cf. comment by R. J. Mathar in A000326.

Examples

			See A135768 for a list of P(n) which are in A136113 but not in A135769.
		

Crossrefs

Programs

  • PARI
    P(n)=n*(3*n-1)/2
    isPent(t)=P(sqrtint((t*2)\3)+1)==t
    for( i=1,999,for( j=1,(P(i)-1)\3, isPent(P(i)+P(j))&j!=i&next(2)); print1(P(i)","))

Formula

P(n)=n*(3*n-1)/2 <=> n*(n-1/3) = (2/3)*P(n), thus m = P(n) <=> m = P([sqrt(2m/3)]+1)
and m = P(n) <=> 24m+1 = (6n-1)^2, useful for investigating the possibility of writing P(n)=P(n')+P(n"): this is possible whenever (6n-1)^2=(6n'-1)^2+(6n"-1)^2-1.

A137694 Numbers k such that 6k^2-2k = 3n^2-n for some integer n>0.

Original entry on oeis.org

5, 5577, 6435661, 7426747025, 8570459630997, 9890302987423321, 11413401077026881245, 13171054952586033533217, 15199386001883205670450981, 17540078275118266757666898665, 20241235130100477955141930608237, 23358367800057676441967030255006641
Offset: 1

Views

Author

M. F. Hasler, Feb 08 2008

Keywords

Comments

Also indices of pentagonal numbers which are half of some other pentagonal number: see A137693 for more details, comments and links.

Crossrefs

Programs

  • PARI
    vector(20,i, (v=if(i>1,[577,408;816,577]*v-[164;232], [5;7]))[1,1])

Formula

a(n) = f^{2n-2}(5,7)[1], where f(x,y) = (577x + 408y - 164, 816x + 577y - 232).
a(n) = (5,7,1,5,7,1,...) (mod 10).
G.f.: -x*(5-198*x+x^2) / ( (x-1)*(x^2-1154*x+1) ). - R. J. Mathar, Apr 17 2011

A137693 Numbers n such that 3n^2-n = 6k^2-2k for some integer k>0.

Original entry on oeis.org

7, 7887, 9101399, 10503006367, 12120460245927, 13987000620793199, 16140986595935105527, 18626684544708490984767, 21495177823607002661315399, 24805416581757936362666985487, 28625429240170834955515039936407, 33033720537740561780727993419627999
Offset: 1

Views

Author

M. F. Hasler, Feb 08 2008

Keywords

Comments

Also indices of pentagonal numbers which are twice some other pentagonal number.
Note that A000326(n) = 2 A000326(k) <=> n(3n-1)=2k(3k-1), which is easily solved by standard Pell-type techniques (cf. link to D. Alpern's quadratic solver). Here we consider only positive solutions.
Inspired by a recent comment on A000326 by R. J. Mathar.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (-7+198x+x^2)/((x-1)(x^2-1154x+1)),{x,0,20}],x] (* or *) Join[{0},LinearRecurrence[{1155,-1155,1},{7,7887,9101399}, 20]] (* Harvey P. Dale, Jun 21 2011 *)
  • PARI
    vector(20,i, (v=if(i>1,[577,408; 816,577]*v-[164;232], [5;7]))[2,1])

Formula

a(n) = f^{2n-2}(5,7)[2], where f(x,y) = (577x + 408y - 164, 816x + 577y - 232)
a(n) = (7,7,9,7,7,9,...) mod 10
G.f. x*(-7+198*x+x^2) / ( (x-1)*(x^2-1154*x+1) ). - R. J. Mathar, Apr 17 2011
a(0)=0, a(1)=7, a(2)=7887, a(3)=9101399, a(n)=1155*a(n-1)-1155*a(n-2)+ a(n-3). - Harvey P. Dale, Jun 21 2011

Extensions

More terms from Harvey P. Dale, Jun 21 2011

A330657 Number of ways the n-th pentagonal number A000326(n) can be written as the difference of two positive pentagonal numbers.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 0, 2, 1, 1, 3, 1, 0, 2, 3, 0, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 2, 1, 1, 1, 1, 3, 2, 2, 2, 1, 4, 1, 0, 2, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 1, 3, 2, 1, 6, 1, 1, 1, 3, 2
Offset: 1

Views

Author

Bradley Klee, Mar 01 2020

Keywords

Comments

Equivalently, a(n) is the number of triples [n,k,m] with k>0 satisfying the Diophantine equation n*(3*n-1) + k*(3*k-1) - m*(3*m-1) = 0. Any such triple satisfies a triangle inequality, n+k > m. The n for which there is a triple [n,n,m] are listed in A137694. Solutions of the form [n,m-1,m] appear only when n=3*z+1, z > 0. The n for which a(n)=0 are listed in A135768.

Examples

			Isosceles case, n=5: 2*5*(3*5-1) - 7*(3*7-1) = 0.
		

References

  • N. J. A. Sloane et al., "sum of 2 triangular numbers is a triangular number", math-fun mailing list, Feb. 19-29, 2020.

Crossrefs

Programs

  • Mathematica
    PentaTriples[PNn_] := Sort[Select[{PNn,
          (-PNn + 3 PNn^2 + # - 3 #^2)/(6 #),
          (-PNn + 3 PNn^2 + # + 3 #^2)/(6 #)
          } & /@ Divisors[PNn*(3*PNn - 1)],
       And[And @@ (IntegerQ /@ #), And @@ (# > 0 & /@ #)] &]]
    Length[PentaTriples[#]] & /@ Range[100]
    a[n_] := Length@FindInstance[n > 0 && y > 0 && z > 0 &&
         n (3 n - 1) + y (3 y - 1) == z (3 z - 1), {y, z}, Integers, 10^9];
    a /@ Range[100]

A199639 Indices of hexagonal numbers that are not the difference of two positive hexagonal numbers.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 12, 16, 19, 22, 24, 28, 31, 32, 43, 48, 64, 76, 79, 96, 103, 112, 128, 139, 142, 163, 166, 184, 192, 199, 211, 223, 256, 262, 268, 271, 283, 304, 307, 316, 331, 352, 367, 376, 379, 384, 412, 439, 448, 454, 463, 496, 499, 512, 526, 547
Offset: 1

Views

Author

T. D. Noe, Dec 06 2011

Keywords

Crossrefs

Cf. A000384 (hexagonal numbers), A135768 (pentagonal case).

Programs

  • Mathematica
    Select[Range[600], Reduce[#*(2*#-1) == x*(2*x-1) - y*(2*y-1) && x > 0 && y > 0, {x, y}, Integers] == False &]
Showing 1-6 of 6 results.