A135772 Numbers having equal number of divisors and binary digits.
1, 2, 3, 4, 8, 10, 14, 15, 16, 32, 44, 45, 50, 52, 63, 64, 128, 130, 135, 136, 138, 152, 154, 165, 170, 174, 182, 184, 186, 189, 190, 195, 222, 230, 231, 232, 238, 246, 248, 250, 255, 256, 441, 484, 512, 567, 592, 656, 688, 752, 848, 891, 944, 976
Offset: 1
Examples
a(1) = 1 since 1 has 1 divisor and 1 binary digit. a(2), a(3) = 2, 3 since 2 = 10_2 and 3 = 11_2 have 2 divisors and 2 binary digits. a(4) = 4 = 100_2 is the only number with 3 binary digits having 3 divisors. 8, 10, 14, 15 have 4 binary digits and 4 divisors.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Select[Range[500], DivisorSigma[0, #] == IntegerLength[#, 2] &] (* G. C. Greubel, Nov 08 2016 *)
-
PARI
for(d=1,10,for(n=2^(d-1),2^d-1,d==numdiv(n)&print1(n", ")))
-
Python
from sympy import divisor_count def ok(n): return divisor_count(n) == n.bit_length() print(list(filter(ok, range(1, 977)))) # Michael S. Branicky, Jul 29 2021
Comments