cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135785 Union of A000040, A001248 and A037074.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Vladimir Shevelev, May 10 2008, May 16 2008

Keywords

Comments

a(n) possesses the following property: every i not exceeding a(n)/2 for which (a(n),i)>1 does not divide binomial(a(n)-i-1,i-1). Numbers with this property are called "binomial primes". There exist only nine binomial primes which are not terms of this sequence:1,6,8,10,12,20,21,24,33.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := PrimeQ[n] || (PrimeNu[n]<3 && Module[{p = FactorInteger[n][[1,1]]}, n==p^2 || (n==p(p+2) && PrimeQ[p+2])]); Select[Range[2, 250], aQ] (* Amiram Eldar, Dec 04 2018 *)
  • PARI
    isok(n) = isprime(n) || (issquare(n) && isprime(sqrtint(n))) || (issquare(n+1) && isprime(sqrtint(n+1)-1) && isprime(sqrtint(n+1)+1)); \\ Michel Marcus, Dec 04 2018

Extensions

Missing 47 and more terms from Michel Marcus, Dec 04 2018