A256418 Congrua (possible solutions to the congruum problem): numbers k such that there are integers x, y and z with k = x^2-y^2 = z^2-x^2.
24, 96, 120, 216, 240, 336, 384, 480, 600, 720, 840, 864, 960, 1080, 1176, 1320, 1344, 1536, 1920, 1944, 2016, 2160, 2184, 2400, 2520, 2880, 2904, 3000, 3024, 3360, 3456, 3696, 3840, 3960, 4056, 4320, 4704, 4896, 5280, 5376, 5400, 5544
Offset: 1
Keywords
Examples
a(11)=840 since 840=29^2-1^2=41^2-29^2 (indeed also 840=37^2-23^2=47^2-37^2).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Congruum (but beware errors)
- Wikipedia, Congruum (but beware errors).
Crossrefs
Programs
-
Mathematica
r[n_] := Reduce[0 < y < x && 0 < x < z && n == x^2 - y^2 == z^2 - x^2, {x, y, z}, Integers]; Reap[For[n = 24, n < 10^4, n += 24, rn = r[n]; If[rn =!= False, Print[n, " ", rn]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 25 2019 *)
Comments