cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135836 Column three of the triangular matrix in A135835.

Original entry on oeis.org

3, 22, 82, 254, 677, 1692, 3972, 9052, 19975, 43394, 92534, 195546, 408489, 848584, 1749544, 3594104, 7345547, 14976366, 30424986, 61706038, 124829101, 252226676, 508704716, 1025115156, 2062984719, 4149086938, 8336437438, 16742227730, 33599246513, 67406551968
Offset: 1

Views

Author

John W. Layman, Nov 30 2007

Keywords

Comments

Column two of the associated matrix is A005803.

Crossrefs

Programs

  • Magma
    [(1/12)*(330 +78*n +3*2^(n+8) -(1-(-1)^n)*106*3^((n+3)/2) -(1+(-1)^n)*61*3^(2 +n/2)): n in [1..40]]; // G. C. Greubel, Feb 07 2022
    
  • Mathematica
    LinearRecurrence[{4,-2,-10,15,-6}, {3,22,82,254,677}, 40] (* G. C. Greubel, Feb 07 2022 *)
  • SageMath
    def a(n):
        if (n%2==0): return (1/2)*(55 + 13*n + 2^(n+7) -61*3^(n/2+1))
        else: return (1/2)*(55 + 13*n + 2^(n+7) - 106*3^((n+1)/2))
    [a(n) for n in (1..40)] # G. C. Greubel, Feb 07 2022

Formula

From G. C. Greubel, Feb 07 2022: (Start)
a(n) = (1/4)*(110 + 26*n + 2^(n+8) - (1 - (-1)^n)*106*3^((n+1)/2) - (1 + (-1)^n)*61*3^(1+n/2)).
a(2*n) = (1/2)*(55 + 26*n + 2^(2*n+7) - 61*3^(n+1)).
a(2*n+1) = (1/2)*(68 + 26*n + 4^(n+4) - 106*3^(n+1)).
G.f.: x*(3 + 10*x)/((1-x)^2*(1 - 2*x - 3*x^2 + 6*x^3)).
E.g.f.: (1/2)*( (55 + 13*x)*exp(x) + 128*exp(2*x) - 183*cosh(sqrt(3)*x) - 106*sqrt(3)*sinh(sqrt(3)*x) ). (End)

Extensions

Terms a(14) onward added by G. C. Greubel, Feb 07 2022