A135838 Triangle read by rows: T(n,k) = 2^floor(n/2)*binomial(n-1,k-1).
1, 2, 2, 2, 4, 2, 4, 12, 12, 4, 4, 16, 24, 16, 4, 8, 40, 80, 80, 40, 8, 8, 48, 120, 160, 120, 48, 8, 16, 112, 336, 560, 560, 336, 112, 16, 16, 128, 448, 896, 1120, 896, 448, 128, 16, 32, 288, 1152, 2688, 4032, 4032, 2688, 1152, 288, 32
Offset: 1
Examples
First few rows of the triangle are: 1; 2, 2; 2, 4, 2; 4, 12, 12, 4; 4, 16, 24, 16, 4; 8, 40, 80, 80, 40, 8; ...
Links
- Gheorghe Coserea, Rows n = 1..100, flattened
Programs
-
Maple
A135838 := proc(n,k) 2^floor(n/2)*binomial(n-1,k-1) ; end proc: seq(seq( A135838(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 15 2022
-
Mathematica
T[n_, k_]:= 2^Floor[n/2]*Binomial[n-1, k-1]; Table[T[n, k], {n,12}, {k,n}] //Flatten (* G. C. Greubel, Feb 07 2022 *)
-
PARI
A(n,k) = 2^(n\2)*binomial(n-1,k-1); concat(vector(10, n, vector(n, k, A(n,k)))) \\ Gheorghe Coserea, May 18 2016
-
Sage
flatten([[2^(n//2)*binomial(n-1, k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 07 2022
Formula
M * Pascal's triangle as infinite lower triangular matrices, where M = a triangle with (1, 2, 2, 4, 4, 8, 8, 16, 16, ...) in the main diagonal and the rest zeros.
Sum_{k=1..n} T(n, k) = A094015(n-1).
From G. C. Greubel, Feb 07 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 1) = A016116(n).
T(n, 2) = 2*A093968(n-1).
T(2*n-1, n) = A059304(n-1).
T(2*n, n) = 2*A069720(n). (End)