A135927 a(n) = a(n-1)^2 - 2 with a(1) = 10.
10, 98, 9602, 92198402, 8500545331353602, 72259270930397519221389558374402, 5221402235392591963136699520829303150191924374488750728808857602
Offset: 1
Examples
a(4) = 2*cosh(2^3*log(5 + 2*sqrt(6))) = 92198402.
Links
- Gabriel Klambauer, Summation of Series, Amer. Math. Monthly, Vol. 87, No. 2 (Feb., 1980), pp. 128-130.
- Raphael M. Robinson, Mersenne and Fermat Numbers, Proceedings of the American Mathematical Society, Vol. 5, No. 5. (October 1954), pp. 842-846.
- E. L. Roettger and H. C. Williams, Some Remarks Concerning the Lucas-Lehmer Primality Test, Journal of Integer Sequences, Vol. 28 (2025), Article 25.2.5. See p. 3.
- Wikipedia, Engel expansion
Programs
-
Mathematica
a[1] = 10; a[n_] := a[n] = a[n - 1]^2 - 2; a[#]&/@Range[7]
-
Python
A135927 = [10] for n in range(1, 8): A135927.append(A135927[-1]**2-2) print(A135927) # Karl-Heinz Hofmann, Feb 01 2022
Formula
a(n) = 2*cosh(2^(n-1)*log(5 + 2*sqrt(6))) = exp(2^(n-1)*log(5 + 2*sqrt(6))) + exp(2^(n-1)*log(5 - 2*sqrt(6))) = (5 + 2*sqrt(6))^(2^(n-1)) + (5 - 2*sqrt(6))^(2^(n-1)) = ceiling(exp(2^(n-1)*log(5 + 2*sqrt(6)))) = ceiling((5 + 2*sqrt(6))^(2^(n-1))).
From Peter Bala, Feb 01 2022: (Start)
Product_{n >= 1} (1 + 2/a(n)) = (1/2)*sqrt(6); Product_{n >= 1} (1 - 1/a(n)) = (4/11)*sqrt(6).
Engel expansion of 5 - sqrt(24) = 1/a(1) + 1/(a(1)*a(2)) + 1/(a(1)*a(2)*a(3)) + .... See Klambauer, p. 130. (End)
Comments