cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A135927 a(n) = a(n-1)^2 - 2 with a(1) = 10.

Original entry on oeis.org

10, 98, 9602, 92198402, 8500545331353602, 72259270930397519221389558374402, 5221402235392591963136699520829303150191924374488750728808857602
Offset: 1

Views

Author

Ant King, Dec 07 2007

Keywords

Comments

This is the Lucas-Lehmer sequence with starting value u(1) = 10 and the position of the zeros when it is reduced mod(2^p - 1) also gives the position of the Mersenne primes. As we have started with n = 1, these will occupy the (p - 1)th positions in the sequence. For example, the first 12 terms mod(2^13 - 1) are 10, 98, 1411, 506, 2113, 672, 1077, 4996, 2037, 4721, 128, 0 and hence 8191 is a Mersenne prime. The radicals in the above closed forms are the solutions to x^2 - 10x + 1 = 0.

Examples

			a(4) = 2*cosh(2^3*log(5 + 2*sqrt(6))) = 92198402.
		

Crossrefs

Programs

Formula

a(n) = 2*cosh(2^(n-1)*log(5 + 2*sqrt(6))) = exp(2^(n-1)*log(5 + 2*sqrt(6))) + exp(2^(n-1)*log(5 - 2*sqrt(6))) = (5 + 2*sqrt(6))^(2^(n-1)) + (5 - 2*sqrt(6))^(2^(n-1)) = ceiling(exp(2^(n-1)*log(5 + 2*sqrt(6)))) = ceiling((5 + 2*sqrt(6))^(2^(n-1))).
From Peter Bala, Feb 01 2022: (Start)
Product_{n >= 1} (1 + 2/a(n)) = (1/2)*sqrt(6); Product_{n >= 1} (1 - 1/a(n)) = (4/11)*sqrt(6).
Engel expansion of 5 - sqrt(24) = 1/a(1) + 1/(a(1)*a(2)) + 1/(a(1)*a(2)*a(3)) + .... See Klambauer, p. 130. (End)

A136188 Digital roots of the Fermat numbers in A000215(n).

Original entry on oeis.org

3, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8
Offset: 0

Views

Author

Ant King, Dec 24 2007

Keywords

Comments

As 2^(2^n)+1=5 (mod 9) for odd values of n and 2^(2^n)+1=8 (mod 9) for even values of n>0, it follows that the digital roots of the Fermat numbers form a cyclic sequence, with the 5's corresponding to odd values of n and the 8's to even values of n.
Decimal expansion of 71/198. - Enrique Pérez Herrero, Nov 13 2021

Examples

			2^(2^3) + 1 = 257. This has digital root 5 and hence a(3) = 5.
		

Crossrefs

Essentially the same as A010719.

Programs

  • Mathematica
    FermatNumber[n_]:=2^(2^n)+1;DigitalRoot[n_]:=FixedPoint[Plus@@IntegerDigits[ # ]&,n];DigitalRoot/@(FermatNumber[ # ] &/@Range[0,25])
  • PARI
    a(n)=if(n,if(n%2,5,8),3) \\ Charles R Greathouse IV, May 01 2016

Formula

a(n) = A010888(A000215(n)).
Showing 1-2 of 2 results.