cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136001 Primes in A136000.

Original entry on oeis.org

11, 23, 29, 47, 59, 71, 79, 83, 89, 107, 131, 139, 149, 167, 179, 181, 191, 197, 199, 223, 227, 233, 239, 251, 263, 269, 307, 311, 347, 349, 359, 373, 379, 383, 389, 419, 431, 439, 443, 449, 461, 467, 479, 491, 503, 509, 563, 569, 571, 587, 593, 599, 607, 643
Offset: 1

Views

Author

Omar E. Pol, Dec 10 2007

Keywords

Examples

			a(1) = 11 because 11 is prime and {3,4,5} is a Pythagorean triple and 3+4+5 = 12 is the sum of a Pythagorean triple and 11+1 = 12, then we can write 3+4+5 = 11+1.
		

Crossrefs

Cf. A136000, A136003, A009096 (perimeters of Pythagorean triangles).

Programs

  • Maple
    isprPer := proc(p) local dvs,m,n ; if p mod 2 = 1 then RETURN(false) ; fi ; dvs := p/2 ; for m in numtheory[divisors](dvs) do n := dvs/m-m ; if n > 0 and n < m then RETURN(true) ; fi ; od: RETURN(false) ; end: isA010814 := proc(n) local d; for d in numtheory[divisors](n) do if isprPer(n/d) then RETURN(true) ; fi ; od: RETURN(false) ; end: isA136000 := proc(n) isA010814(n+1) ; end: isA136001 := proc(n) isprime(n) and isA136000(n) ; end: for n from 2 to 600 do if isA136001(n) then printf("%d, ",n) ; fi: od: # R. J. Mathar, Dec 12 2007
  • Mathematica
    q[n_] := PrimeQ[n] && Module[{d = Divisors[(n+1)/2]}, AnyTrue[Range[3, Length[d]], d[[#]] < 2 * d[[#-1]] &]]; Select[Range[650], q] (* Amiram Eldar, Oct 19 2024 *)

Extensions

More terms from R. J. Mathar, Dec 12 2007
Extended by Ray Chandler, Dec 13 2008