A136011 Irregular triangle read by rows, Stirling numbers of the second kind: columns shifted to allow (1, 1, 2, 2, 3, 3, ...) terms per row.
1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 15, 6, 1, 31, 25, 1, 1, 63, 90, 10, 1, 127, 301, 65, 1, 1, 255, 966, 350, 15, 1, 511, 3025, 1701, 140, 1, 1, 1023, 9330, 7770, 1050, 21, 1, 2047, 28501, 34105, 6951, 266, 1, 1, 4095, 86526, 145750, 42525, 2646, 28
Offset: 1
Examples
First few rows of the triangle: 1; 1; 1, 1; 1, 3; 1, 7, 1; 1, 15, 6; 1, 31, 25, 1; 1, 63, 90, 10; 1, 127, 301, 65, 1; 1, 255, 966, 350, 15; ... T(5,3) = 1 because we have {1,2},{3,4},{5,6}. T(6,3) = 6 because we have {1,2,7},{3,4},{5,6}; {1,2},{3,4,7},{5,6}; {1,2},{3,4},{5,6,7}; {1,2},{3,4,5},{6,7}; {1,2,3},{4,5},{6,7}; {1,2,5},{3,4},{6,7}. - _Geoffrey Critzer_, Dec 02 2013
Links
- Alois P. Heinz, Rows n = 1..200, flattened
Programs
-
Maple
T:= (n, k)-> Stirling2(n+1-k, k): seq(seq(T(n, k), k=1..(n+1)/2), n=1..20); # Alois P. Heinz, Dec 04 2013
-
Mathematica
nn=15;Range[0,nn]!;Map[Select[#,#>0&]&,Drop[Transpose[Table[CoefficientList[Series[Product[x^2/(1-i x),{i,1,k}],{x,0,nn}],x],{k,1,nn/2}]],2]]//Grid (* Geoffrey Critzer, Dec 02 2013 *)
Formula
Given A008277, the Stirling number of the second kind triangle, left column = (1, 1, 1, ...); all other columns start at 3rd term of previous column.
O.g.f. for column k: Product_{i=1..k} x^2/(1 - i*x). - Geoffrey Critzer, Dec 02 2013
T(n,k) = Stirling2(n+1-k,k). - Alois P. Heinz, Dec 04 2013
Comments