cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136011 Irregular triangle read by rows, Stirling numbers of the second kind: columns shifted to allow (1, 1, 2, 2, 3, 3, ...) terms per row.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 15, 6, 1, 31, 25, 1, 1, 63, 90, 10, 1, 127, 301, 65, 1, 1, 255, 966, 350, 15, 1, 511, 3025, 1701, 140, 1, 1, 1023, 9330, 7770, 1050, 21, 1, 2047, 28501, 34105, 6951, 266, 1, 1, 4095, 86526, 145750, 42525, 2646, 28
Offset: 1

Views

Author

Gary W. Adamson, Dec 09 2007

Keywords

Comments

Row sums = A024427: (1, 1, 2, 4, 9, 22, 58, 164, 495, 1587, ...).
T(n,k) is the number of ways to partition {1,2,...,n+1} into exactly k blocks such that each block contains at least 2 elements and the smallest 2 elements in each block are consecutive integers. - Geoffrey Critzer, Dec 02 2013

Examples

			First few rows of the triangle:
  1;
  1;
  1,   1;
  1,   3;
  1,   7,   1;
  1,  15,   6;
  1,  31,  25,   1;
  1,  63,  90,  10;
  1, 127, 301,  65,  1;
  1, 255, 966, 350, 15;
  ...
T(5,3) = 1 because we have {1,2},{3,4},{5,6}.
T(6,3) = 6 because we have {1,2,7},{3,4},{5,6}; {1,2},{3,4,7},{5,6}; {1,2},{3,4},{5,6,7}; {1,2},{3,4,5},{6,7}; {1,2,3},{4,5},{6,7}; {1,2,5},{3,4},{6,7}. - _Geoffrey Critzer_, Dec 02 2013
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> Stirling2(n+1-k, k):
    seq(seq(T(n, k), k=1..(n+1)/2), n=1..20); # Alois P. Heinz, Dec 04 2013
  • Mathematica
    nn=15;Range[0,nn]!;Map[Select[#,#>0&]&,Drop[Transpose[Table[CoefficientList[Series[Product[x^2/(1-i x),{i,1,k}],{x,0,nn}],x],{k,1,nn/2}]],2]]//Grid (* Geoffrey Critzer, Dec 02 2013 *)

Formula

Given A008277, the Stirling number of the second kind triangle, left column = (1, 1, 1, ...); all other columns start at 3rd term of previous column.
O.g.f. for column k: Product_{i=1..k} x^2/(1 - i*x). - Geoffrey Critzer, Dec 02 2013
T(n,k) = Stirling2(n+1-k,k). - Alois P. Heinz, Dec 04 2013