cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136019 Smallest prime of the form (prime(k)+2*n)/(2*n+1), any k.

Original entry on oeis.org

3, 3, 5, 3, 3, 5, 3, 7, 11, 3, 3, 5, 5, 3, 11, 3, 3, 5, 3, 3, 5, 5, 7, 5, 3, 3, 7, 5, 13, 7, 3, 3, 5, 3, 13, 5, 3, 7, 5, 3, 3, 13, 5, 3, 7, 5, 3, 5, 3, 7, 7, 3, 7, 11, 3, 3, 5, 11, 3, 7, 7, 3, 5, 11, 3, 13, 3, 7, 5, 3, 7, 11, 7, 13, 7, 3, 3, 11, 23, 7, 5, 3, 31, 5, 13, 3, 5, 5, 3, 7, 3, 13, 7, 3, 3, 5, 7
Offset: 1

Views

Author

Artur Jasinski, Dec 10 2007

Keywords

Comments

The associated prime(k) are in A136020.

Examples

			a(1)=3 because 3 is smallest prime of the form (p+2)/3; in this case prime(k)=7.
a(2)=3 because 3 is smallest prime of the form (p+4)/5; in this case prime(k)=11.
a(3)=5 because 5 is smallest prime of the form (p+6)/7; in this case prime(k)=29.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # to allow prime(k) <= N
    Primes:= select(isprime,[2,seq(2*i+1,i=1..floor((N-1)/2))]):
    f:= proc(t,n)
      local s;
      s:= (t+2*n)/(1+2*n);
      type(s,integer) and isprime(s)
    end proc:
    for n from 1 do
      p:= ListTools:-SelectFirst(f, Primes,n);
      if p = NULL then break fi;
      A[n]:= (p+2*n)/(1+2*n);
    od:
    seq(A[i],i=1..n-1); # Robert Israel, Sep 08 2014
  • Mathematica
    a = {}; Do[k = 1; While[ !PrimeQ[(Prime[k] + 2n)/(2n + 1)], k++ ]; AppendTo[a, (Prime[k] + 2n)/(2n + 1)], {n, 1, 200}]; a
    sp[n_]:=Module[{k=1},While[!PrimeQ[(Prime[k]+2n)/(2n+1)],k++];(Prime[ k]+2n)/(2n+1)]; Array[sp,100] (* Harvey P. Dale, May 20 2021 *)
  • PARI
    a(n)=my(N=2*n,k=0,t);forprime(p=2,default(primelimit),k++;t=(p+N)/(N+1);if(denominator(t)==1&isprime(t),return(t))) \\ Charles R Greathouse IV, Jun 16 2011

Extensions

Edited by R. J. Mathar, May 17 2009