A136019 Smallest prime of the form (prime(k)+2*n)/(2*n+1), any k.
3, 3, 5, 3, 3, 5, 3, 7, 11, 3, 3, 5, 5, 3, 11, 3, 3, 5, 3, 3, 5, 5, 7, 5, 3, 3, 7, 5, 13, 7, 3, 3, 5, 3, 13, 5, 3, 7, 5, 3, 3, 13, 5, 3, 7, 5, 3, 5, 3, 7, 7, 3, 7, 11, 3, 3, 5, 11, 3, 7, 7, 3, 5, 11, 3, 13, 3, 7, 5, 3, 7, 11, 7, 13, 7, 3, 3, 11, 23, 7, 5, 3, 31, 5, 13, 3, 5, 5, 3, 7, 3, 13, 7, 3, 3, 5, 7
Offset: 1
Examples
a(1)=3 because 3 is smallest prime of the form (p+2)/3; in this case prime(k)=7. a(2)=3 because 3 is smallest prime of the form (p+4)/5; in this case prime(k)=11. a(3)=5 because 5 is smallest prime of the form (p+6)/7; in this case prime(k)=29.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^5: # to allow prime(k) <= N Primes:= select(isprime,[2,seq(2*i+1,i=1..floor((N-1)/2))]): f:= proc(t,n) local s; s:= (t+2*n)/(1+2*n); type(s,integer) and isprime(s) end proc: for n from 1 do p:= ListTools:-SelectFirst(f, Primes,n); if p = NULL then break fi; A[n]:= (p+2*n)/(1+2*n); od: seq(A[i],i=1..n-1); # Robert Israel, Sep 08 2014
-
Mathematica
a = {}; Do[k = 1; While[ !PrimeQ[(Prime[k] + 2n)/(2n + 1)], k++ ]; AppendTo[a, (Prime[k] + 2n)/(2n + 1)], {n, 1, 200}]; a sp[n_]:=Module[{k=1},While[!PrimeQ[(Prime[k]+2n)/(2n+1)],k++];(Prime[ k]+2n)/(2n+1)]; Array[sp,100] (* Harvey P. Dale, May 20 2021 *)
-
PARI
a(n)=my(N=2*n,k=0,t);forprime(p=2,default(primelimit),k++;t=(p+N)/(N+1);if(denominator(t)==1&isprime(t),return(t))) \\ Charles R Greathouse IV, Jun 16 2011
Extensions
Edited by R. J. Mathar, May 17 2009
Comments